The initial-boundary value problem for the Schrödinger equation with the nonlinear Neumann boundary condition on the half-plane

被引:1
|
作者
Ogawa, Takayoshi [1 ,2 ]
Sato, Takuya [2 ]
Tsuhara, Shun [1 ]
机构
[1] Waseda Univ, Dept Math, Tokyo 1698555, Japan
[2] Kumamoto Univ, Fac Adv Sci & Technol, Kumamoto 8608555, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 04期
关键词
Nonlinear Schr & ouml; dinger equation; Half-space; Nonlinear Neumann boundary condition; Well-posedness; LINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM;
D O I
10.1007/s00030-024-00943-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial-boundary value problem of the nonlinear Schr & ouml;dinger equation on the half plane with a nonlinear Neumann boundary condition. After establishing the boundary Strichartz estimate in L2(R+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2({\mathbb {R}}<^>2_+)$$\end{document} and Hs(R+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s({\mathbb {R}}<^>2_+)$$\end{document}, we consider the time local well-posedness of the problem in L2(R+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2({\mathbb {R}}<^>2_+)$$\end{document} and Hs(R+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s({\mathbb {R}}<^>2_+)$$\end{document}.
引用
收藏
页数:22
相关论文
共 50 条