Locked and Unlocked Polygonal Chains in Three Dimensions

被引:0
|
作者
T. Biedl
E. Demaine
M. Demaine
S. Lazard
A. Lubiw
J. O'Rourke
M. Overmars
S. Robbins
I. Streinu
G. Toussaint
S. Whitesides
机构
[1] Department of Mathematics,
[2] University of Waterloo,undefined
[3] Waterloo,undefined
[4] Ontario,undefined
[5] Canada N2L 3G1 \{biedl,undefined
[6] eddemaine,undefined
[7] mldemaine,undefined
[8] alubiw\}@uwaterloo.ca,undefined
[9] INRIA Lorraine,undefined
[10] Villers-les-Nancy Cedex 54602,undefined
[11] France lazard@loria.fr,undefined
[12] Department of Computer Science,undefined
[13] Smith College,undefined
[14] Northampton,undefined
[15] MA 01063,undefined
[16] USA \{orourke,undefined
[17] streinu\}@cs.smith.edu,undefined
[18] Department of Computer Science,undefined
[19] Utrecht University,undefined
[20] 3508 TB Utrecht,undefined
[21] The Netherlands markov@cs.ruu.nl,undefined
[22] School of Computer Science,undefined
[23] McGill University,undefined
[24] Montreal,undefined
[25] Quebec,undefined
[26] Canada H3A 2K6 \{stever,undefined
[27] godfried,undefined
[28] sue\}@cs.mcgill.ca,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies movements of polygonal chains in three dimensions whose links are not allowed to cross or change length. Our main result is an algorithmic proof that any simple closed chain that initially takes the form of a planar polygon can be made convex in three dimensions. Other results include an algorithm for straightening open chains having a simple orthogonal projection onto some plane, and an algorithm for making convex any open chain initially configured on the surface of a polytope. All our algorithms require only O(n) basic ``moves.''
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [1] Locked and unlocked polygonal chains in three dimensions
    Biedl, T
    Demaine, E
    Demaine, M
    Lazard, S
    Lubiw, A
    O'Rourke, J
    Overmars, M
    Robbins, S
    Streinu, I
    Toussaint, G
    Whitesides, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (03) : 269 - 281
  • [2] Locked and Unlocked Chains of Planar Shapes
    Connelly, Robert
    Demaine, Erik D.
    Demaine, Martin L.
    Fekete, Sandor P.
    Langerman, Stefan
    Mitchell, Joseph S. B.
    Ribo, Ares
    Rote, Guenter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 439 - 462
  • [3] Locked and Unlocked Chains of Planar Shapes
    Robert Connelly
    Erik D. Demaine
    Martin L. Demaine
    Sándor P. Fekete
    Stefan Langerman
    Joseph S. B. Mitchell
    Ares Ribó
    Günter Rote
    Discrete & Computational Geometry, 2010, 44 : 439 - 462
  • [4] Approximating polygonal curves in two and three dimensions
    Miyaoku, K
    Harada, K
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (03): : 222 - 225
  • [6] The locked-in syndrome: Can it be unlocked?
    Khanna, Kunal
    Verma, Ajit
    Richard, Bella
    JOURNAL OF CLINICAL GERONTOLOGY & GERIATRICS, 2011, 2 (04): : 96 - 99
  • [7] Efficiently Approximating Polygonal Paths in Three and Higher Dimensions
    G. Barequet
    D. Z. Chen
    O. Daescu
    M. T. Goodrich
    J. Snoeyink
    Algorithmica, 2002, 33 : 150 - 167
  • [8] Efficiently approximating polygonal paths in three and higher dimensions
    Barequet, G
    Chen, DZ
    Daescu, O
    Goodrich, MT
    Snoeyink, J
    ALGORITHMICA, 2002, 33 (02) : 150 - 167
  • [9] UNLOCKED PLL RETAINS LOCKED FREQUENCY
    FREED, K
    EDN, 1995, 40 (15) : 70 - 72
  • [10] Locked and Unlocked Nucleosides in Functional Nucleic Acids
    Doessing, Holger
    Vester, Birte
    MOLECULES, 2011, 16 (06): : 4511 - 4526