The Levy-Steinitz rearrangement theorem for duals of metrizable spaces

被引:0
作者
José Bonet
Andreas Defant
机构
[1] Universidad Politécnica de Valencia,Departamento de Matemática Aplicada
[2] Universität Oldenburg,Fachbereich Mathematik
来源
Israel Journal of Mathematics | 2000年 / 117卷
关键词
Convex Space; Convergent Sequence; Convergent Series; Fundamental System; Metrizable Space;
D O I
暂无
中图分类号
学科分类号
摘要
Extending the Levy-Steinitz rearrangement theorem in ℝn, which in turn extended Riemann’s theorem, Banaszczyk proved in 1990/93 that a metrizable, locally convex space is nuclear if and only if the domain of sums of every convergent series (i.e. the set of all elements in the space which are sums of a convergent rearrangement of the series) is a translate of a closed subspace of a special form. In this paper we present an apparently complete analysis of the domains of sums of convergent series in duals of metrizable spaces or, more generally, in (DF)-spaces in the sense of Grothendieck.
引用
收藏
页码:131 / 156
页数:25
相关论文
共 16 条
  • [1] Banaszczyk W.(1990)The Steinitz theorem on rearrangement of series for nuclear spaces Journal für die Reine und Angewandte Mathematik 403 187-200
  • [2] Banaszczyk W.(1993)Rearrangement of series in nonnuclear spaces Studia Mathematica 107 213-222
  • [3] Banaszczyk M.(1984)Characterization of nuclear spaces by means of additive subgroups Mathematische Zeitschrift 186 123-133
  • [4] Banaszczyk W.(1998)Real analytic curves in Fréchet spaces and their duals Monatshefte für Mathematik 126 13-36
  • [5] Bonet J.(1990)Ultradifferentiable functions and Fourier analysis Results in Mathematics 17 411-417
  • [6] Domański P.(1997)On rearrangements of series in locally convex spaces The Michigan Mathematical Journal 44 607-617
  • [7] Braun R.(1985)Fréchet spaces with quotients failing the bounded approximation property Studia Mathematica 81 71-77
  • [8] Meise R.(1905)Sur les séries semi-convergentes Nouvelle Annales de Mathématiques 5 506-511
  • [9] Taylor B. A.(1987)The remarkable theorem of Lévy and Steinitz The American Mathematical Monthly 94 342-351
  • [10] Chasco M.-J.(1913)Bedingt konvergente Reihen und konvexe Systeme Journal für die Reine und Angewandte Mathematik 143 128-175