We study the small mass limit of the equation describing planar motion of a charged particle of a small mass μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu $$\end{document} in a force field, containing a magnetic component, perturbed by a stochastic term. We regularize the problem by adding a small friction of intensity ϵ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\epsilon >0$$\end{document}. We show that for all small but fixed frictions the small mass limit of qμ,ϵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_{\mu , \epsilon }$$\end{document} gives the solution qϵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_\epsilon $$\end{document} to a stochastic first order equation, containing a noise-induced drift term. Then, by using a generalization of the classical averaging theorem for Hamiltonian systems by Freidlin and Wentzell, we take the limit of the slow component of the motion qϵ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q_\epsilon $$\end{document} and we prove that it converges weakly to a Markov process on the graph obtained by identifying all points in the same connected components of the level sets of the magnetic field intensity function.