Series expansion study of quantum percolation on the square lattice

被引:0
作者
D. Daboul
I. Chang
A. Aharony
机构
[1] School of Physics and Astronomy,
[2] Raymond and Beverly Sackler Faculty of Exact Sciences,undefined
[3] Tel Aviv University,undefined
[4] 69978 Tel Aviv,undefined
[5] Israel,undefined
[6] Department of Physics,undefined
[7] Pusan National University,undefined
[8] Pusan 609-735,undefined
[9] Korea,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 2000年 / 16卷
关键词
PACS. 72.15.Rn Localization effects (Anderson or weak localization) - 05.70.Jk Critical point phenomena - 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the site and bond quantum percolation model on the two-dimensional square lattice using series expansion in the low concentration limit. We calculate series for the averages of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where Tij(E) is the transmission coefficient between sites i and j, for k=0, 1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, 5 and for several values of the energy E near the center of the band. In the bond case the series are of order p14 in the concentration p(some of those have been formerly available to order p10) and in the site case of order p16. The analysis, using the Dlog-Padé approximation and the techniques known as M1 and M2, shows clear evidence for a delocalization transition (from exponentially localized to extended or power-law-decaying states) at an energy-dependent threshold pq(E) in the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, confirming previous results (e.g.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}for bond and site percolation) but in contrast with the Anderson model. The divergence of the series for different kis characterized by a constant gap exponent, which is identified as the localization length exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} from a general scaling assumption. We obtain estimates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. These values violate the bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of Chayes et al.
引用
收藏
页码:303 / 316
页数:13
相关论文
empty
未找到相关数据