Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage

被引:0
|
作者
Suwanna Phukunkamkaew
Rujira Tisarum
Piyanan Pipatsitee
Thapanee Samphumphuang
Sarunyaporn Maksup
Suriyan Cha-um
机构
[1] Silpakorn University,Department of Biology, Faculty of Science
[2] National Science and Technology Development Agency (NSTDA),National Center for Genetic Engineering and Biotechnology (BIOTEC)
关键词
Aluminum content; Crop water stress index; Leaf temperature; Root length; Stomata closure;
D O I
暂无
中图分类号
学科分类号
摘要
Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem. In the present study, we investigated the Al content in different rice genotypes, IR64 (high yielding), RD35 (local acidic-tolerant), and Azucena (AZU, positive-check Al-tolerant), and their physiological and morphological adaptations under a wide range Al (10, 25, 50 mM [Al2(SO4)3]) treatments in the greenhouse conditions. Under 50-mM Al treatment, Al levels in the root tissues of rice seedlings cvs. AZU and IR64 were increased by 2.74- and 2.10-fold over control. Interestingly, Al contents in the roots of cv. RD35 were also exhibited by 2.04-fold over control. Similarly, Al contents in the leaves trend to increase in relation to a degree of Al treatments, leading to increase leaf temperature, chlorophyll degradation, limited CO2 assimilation, and negative effect on root traits under 50 mM Al were evidently observed. Therefore, leaf temperature was considered a sensitive parameter regulated by high concentration of Al (50 mM), leading to increase in crop water stress index (CWSI > 0.6) and decrease in stomata conductance. Net photosynthetic rate (Pn) and transpiration rate (E) in rice seedlings of cv. RD35 subjected to 50 mM Al were significantly dropped by 74.76% and 47.71% over the control, respectively, resulting in reduced growth performances in terms of root length (26.57% reduction) and shoot fresh weight (46.15% reduction). An enrichment of Al in the root tissues without toxicity in rice cv. AZU may further help in discovering the Al homeostasis. In summary, Al enrichment in rice genotypes grown under Al-treatments was evidently observed in the root, leading to the limited root growth, root length, and root dry weight, especially in cv. RD35. Al restriction in the root tissues of cv. AZU (Al-tolerant) may play a key role as defense mechanisms to avoid translocation to other organs and the stomata closure was an alternative key factor to limit H2O transpiration.
引用
收藏
页码:29321 / 29331
页数:10
相关论文
共 50 条
  • [1] Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage
    Phukunkamkaew, Suwanna
    Tisarum, Rujira
    Pipatsitee, Piyanan
    Samphumphuang, Thapanee
    Maksup, Sarunyaporn
    Cha-um, Suriyan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (23) : 29321 - 29331
  • [2] HEAT SHOCK INDUCED MORPHO-PHYSIOLOGICAL RESPONSE IN INDICA RICE (ORYZA SATIVA L.) AT EARLY SEEDLING STAGE
    Zafar, Syed Adeel
    Hameed, Amjad
    Khan, Abdus Salam
    Ashraf, Muhammad
    PAKISTAN JOURNAL OF BOTANY, 2017, 49 (02) : 453 - 463
  • [3] Morpho-physiological Traits Associated with Tolerance of Salinity During Seedling Stage in Rice (Oryza sativa L.)
    Sexcion, Faye Soleil H.
    Egdane, James A.
    Ismail, Abdelbagi M.
    Dionisio-Sese, Maribel L.
    PHILIPPINE JOURNAL OF CROP SCIENCE, 2009, 34 (02): : 27 - 37
  • [4] Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage
    Kyu-Seong Lee
    Weon-Young Choi
    Jong-Cheol Ko
    Tae-Soo Kim
    Glenn B. Gregorio
    Planta, 2003, 216 : 1043 - 1046
  • [5] Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage
    Lee, KS
    Choi, WY
    Ko, JC
    Kim, TS
    Gregorio, GB
    PLANTA, 2003, 216 (06) : 1043 - 1046
  • [6] Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers
    Md. Tahjib-Ul-Arif
    M. Abu Sayed
    Mirza Mofazzal Islam
    M. Nurealam Siddiqui
    S. N. Begum
    M. Afzal Hossain
    Acta Physiologiae Plantarum, 2018, 40
  • [7] Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers
    Tahjib-Ul-Arif, Md.
    Abu Sayed, M.
    Islam, Mirza Mofazzal
    Siddiqui, M. Nurealam
    Begum, S. N.
    Hossain, M. Afzal
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (04)
  • [8] Discerning of Rice Landraces (Oryza sativa L.) for Morpho-physiological, Antioxidant Enzyme Activity, and Molecular Markers’ Responses to Induced Salt Stress at the Seedling Stage
    Md. Rasel
    Md. Tahjib-Ul-Arif
    Md. Amir Hossain
    Md. Abu Sayed
    Lutful Hassan
    Journal of Plant Growth Regulation, 2020, 39 : 41 - 59
  • [9] Discerning of Rice Landraces (Oryza sativa L.) for Morpho-physiological, Antioxidant Enzyme Activity, and Molecular Markers' Responses to Induced Salt Stress at the Seedling Stage
    Rasel, Md
    Tahjib-Ul-Arif, Md
    Hossain, Md Amir
    Abu Sayed, Md
    Hassan, Lutful
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (01) : 41 - 59
  • [10] Morpho-physiological profiling of rice (Oryza sativa) genotypes at germination stage with contrasting tolerance to salinity stress
    Kruthika, N.
    Jithesh, M. N.
    JOURNAL OF PLANT RESEARCH, 2023, 136 (06) : 907 - 930