Roman Domination Dot-critical Graphs

被引:0
作者
Nader Jafari Rad
Lutz Volkmann
机构
[1] Shahrood University of Technology,Department of Mathematics
[2] School of Mathematics,Lehrstuhl II für Mathematik
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] RWTH Aachen University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Domination; Roman domination; Critical;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\sum_{u \in V(G)}f(u)}$$\end{document}. The Roman domination number, γR(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.
引用
收藏
页码:527 / 533
页数:6
相关论文
共 50 条
[41]   On maximal Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Kuziak, Dorota ;
Samodivkin, Vladimir .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (07) :1093-1102
[42]   Signed Roman domination in graphs [J].
H. Abdollahzadeh Ahangar ;
Michael A. Henning ;
Christian Löwenstein ;
Yancai Zhao ;
Vladimir Samodivkin .
Journal of Combinatorial Optimization, 2014, 27 :241-255
[43]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[44]   Triple Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Alvarez, M. P. ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[46]   On Roman domination stability in some simple graphs [J].
Amraee, Mehdi ;
Maghasedi, Mohammad .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44) :682-686
[47]   Upper bounds on Roman domination numbers of graphs [J].
Liu, Chun-Hung ;
Chang, Gerard Jennhwa .
DISCRETE MATHEMATICS, 2012, 312 (07) :1386-1391
[48]   ROMAN DOMINATION ON 2-CONNECTED GRAPHS [J].
Liu, Chun-Hung ;
Chang, Gerard J. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (01) :193-205
[49]   Graphs with Large Hop Roman Domination Number [J].
Shabani, E. ;
Rad, N. Jafari ;
Poureidi, A. .
COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2019, 27 (01) :3-22
[50]   Further Results on the Total Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Carrion Garcia, Andres .
MATHEMATICS, 2020, 8 (03)