Roman Domination Dot-critical Graphs

被引:0
作者
Nader Jafari Rad
Lutz Volkmann
机构
[1] Shahrood University of Technology,Department of Mathematics
[2] School of Mathematics,Lehrstuhl II für Mathematik
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] RWTH Aachen University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Domination; Roman domination; Critical;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\sum_{u \in V(G)}f(u)}$$\end{document}. The Roman domination number, γR(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.
引用
收藏
页码:527 / 533
页数:6
相关论文
共 50 条
  • [21] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [22] Roman domination edge critical graphs having precisely two cycles
    Rad, Nader Jafari
    ARS COMBINATORIA, 2017, 131 : 355 - 372
  • [23] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [24] Unique response Roman domination in graphs
    Targhi, E. Ebrahimi
    Rad, N. Jafari
    Volkmann, L.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (11) : 1110 - 1117
  • [25] Co-Roman domination in graphs
    S ARUMUGAM
    KARAM EBADI
    MARTÍN MANRIQUE
    Proceedings - Mathematical Sciences, 2015, 125 : 1 - 10
  • [26] Mixed double Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [27] On the strong Roman domination number of graphs
    Alvarez-Ruiz, M. P.
    Mediavilla-Gradolph, T.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    Yero, I. G.
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 44 - 59
  • [28] Roman domination on strongly chordal graphs
    Chun-Hung Liu
    Gerard J. Chang
    Journal of Combinatorial Optimization, 2013, 26 : 608 - 619
  • [29] Total Roman {3}-domination in Graphs
    Shao, Zehui
    Mojdeh, Doost Ali
    Volkmann, Lutz
    SYMMETRY-BASEL, 2020, 12 (02):
  • [30] Roman domination on strongly chordal graphs
    Liu, Chun-Hung
    Chang, Gerard J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (03) : 608 - 619