Roman Domination Dot-critical Graphs

被引:0
作者
Nader Jafari Rad
Lutz Volkmann
机构
[1] Shahrood University of Technology,Department of Mathematics
[2] School of Mathematics,Lehrstuhl II für Mathematik
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] RWTH Aachen University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Domination; Roman domination; Critical;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\sum_{u \in V(G)}f(u)}$$\end{document}. The Roman domination number, γR(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.
引用
收藏
页码:527 / 533
页数:6
相关论文
共 50 条
  • [11] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [12] Critical graphs with Roman domination number four
    Martinez-Perez, A.
    Oliveros, D.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 804 - 809
  • [13] Characterization of Roman domination critical unicyclic graphs
    Hansberg, A.
    Rad, N. Jafari
    Volkmann, L.
    UTILITAS MATHEMATICA, 2011, 86 : 129 - 146
  • [14] Resolving Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mahavir, B.
    Kamalam, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [15] Roman domination perfect graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 167 - 174
  • [16] ROMAN DOMINATION STABILITY IN GRAPHS
    Amraee, Mehdi
    Rad, Nader Jafari
    Maghasedi, Mohammad
    MATHEMATICAL REPORTS, 2019, 21 (02): : 193 - 204
  • [17] A note on Roman domination in graphs
    Xing, Hua-Ming
    Chen, Xin
    Chen, Xue-Gang
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3338 - 3340
  • [18] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [19] Perfect Roman domination in graphs
    Banerjee, S.
    Keil, J. Mark
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 1 - 21
  • [20] A note on Roman domination in graphs
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2010, 83 : 305 - 312