机构:Shahrood University of Technology,Department of Mathematics
Lutz Volkmann
机构:
[1] Shahrood University of Technology,Department of Mathematics
[2] School of Mathematics,Lehrstuhl II für Mathematik
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] RWTH Aachen University,undefined
来源:
Graphs and Combinatorics
|
2013年
/
29卷
关键词:
Domination;
Roman domination;
Critical;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${f(V(G))=\sum_{u \in V(G)}f(u)}$$\end{document}. The Roman domination number, γR(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.