Roman Domination Dot-critical Graphs

被引:0
|
作者
Nader Jafari Rad
Lutz Volkmann
机构
[1] Shahrood University of Technology,Department of Mathematics
[2] School of Mathematics,Lehrstuhl II für Mathematik
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] RWTH Aachen University,undefined
来源
Graphs and Combinatorics | 2013年 / 29卷
关键词
Domination; Roman domination; Critical;
D O I
暂无
中图分类号
学科分类号
摘要
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(V(G))=\sum_{u \in V(G)}f(u)}$$\end{document}. The Roman domination number, γR(G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.
引用
收藏
页码:527 / 533
页数:6
相关论文
共 50 条