Quantum random walk polynomial and quantum random walk measure

被引:0
作者
Yuanbao Kang
Caishi Wang
机构
[1] Northwest Normal University,School of Mathematics and statistics
来源
Quantum Information Processing | 2014年 / 13卷
关键词
Quantum random walk; Quantum random walk polynomial ; Quantum random walk measure; Interacting Fock space; Application; Primary 81S25; Secondary 05C20; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we introduce a quantum random walk polynomial (QRWP) that can be defined as a polynomial {Pn(x)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{P_{n}(x)\}$$\end{document}, which is orthogonal with respect to a quantum random walk measure (QRWM) on [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1, 1]$$\end{document}, such that the parameters αn,ωn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{n},\omega _{n}$$\end{document} are in the recurrence relations Pn+1(x)=(x-αn)Pn(x)-ωnPn-1(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_{n+1}(x)= (x - \alpha _{n})P_{n}(x) - \omega _{n}P_{n-1}(x) \end{aligned}$$\end{document}and satisfy αn∈R,ωn>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{n}\in \mathfrak {R},\omega _{n}> 0$$\end{document}. We firstly obtain some results of QRWP and QRWM, in which case the correspondence between measures and orthogonal polynomial sequences is one-to-one. It shows that any measure with respect to which a quantum random walk polynomial sequence is orthogonal is a quantum random walk measure. We next collect some properties of QRWM; moreover, we extend Karlin and McGregor’s representation formula for the transition probabilities of a quantum random walk (QRW) in the interacting Fock space, which is a parallel result with the CGMV method. Using these findings, we finally obtain some applications for QRWM, which are of interest in the study of quantum random walk, highlighting the role played by QRWP and QRWM.
引用
收藏
页码:1191 / 1209
页数:18
相关论文
共 43 条
  • [1] Kempe J(2003)Quantum random walks—an introductory overview Contemp. Phys. 44 307-327
  • [2] Romanelli A(2004)Quantum random walk on the line as a Markovian process Phys. A 338 395-405
  • [3] Sicardi schifino AC(1955)Representation of a class of stochastic processes Proc. Natl. Acad. Sci. USA 41 387-391
  • [4] Siri R(1959)Random walks Ill. J. Math. 3 66-81
  • [5] Karlin S(1995)Geometric ergodicity and quasi-stationarity in discrete-time birth–death processes J. Aust. Math. Soc. (B) 37 121-144
  • [6] McGregor JL(2012)One-mode interacting Fock spaces and random walks on graphs Stoch. Int. J. Probab. Stoch Process. 84 383-392
  • [7] Karlin S(2003)Controlling discrete quantum walks:coins and initial states N. J. Phys. 5 83-43
  • [8] McGregor JL(2002)An example of the difference between quantum and classical random walks Quantum Inf. Process. 1 35-308
  • [9] van Doom EA(2004)One-dimensional continuous-time quantum walks Quantum Inf. Process. 3 295-235
  • [10] Schrijner P(2005)Discrete quantum walks hit exponentially faster Probab. Theory Relat. Fields 133 215-399