Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators

被引:0
作者
Pintu Bhunia
Raj Kumar Nayak
Kallol Paul
机构
[1] Jadavpur University,Department of Mathematics
来源
Results in Mathematics | 2021年 / 76卷
关键词
A-numerical radius; A-operator seminorm; A-adjoint operator; positive operator; semi-Hilbertian space; Primary 47A12; Secondary 47A30; 47A63;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} be a complex Hilbert space and let A be a positive operator on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}. We obtain new bounds for the A-numerical radius of operators in semi-Hilbertian space BA(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}_A(\mathcal {H})$$\end{document} that generalize and improve on the existing ones. Further, we estimate an upper bound for the A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document}-operator seminorm of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} operator matrices, where A=diag(A,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}=\text{ diag }(A,A)$$\end{document}. The bound obtained here generalizes the earlier related bound.
引用
收藏
相关论文
共 39 条
  • [1] Abu-Omar A(2019)A generalization of the numerical radius Linear Algebra Appl. 569 323-334
  • [2] Kittaneh F(2008)Partial isometries in semi-Hilbertian spaces Linear Algebra Appl. 428 1460-1475
  • [3] Arias ML(2020)Norm and numerical radius inequalities for Hilbert space operators Linear Multilinear Algebra 36 143-157
  • [4] Corach G(2020)On inequalities for A-numerical radius of operators Electron. J. Linear Algebra 5 1498-1511
  • [5] Gonzalez MC(2020)Refinements of A-numerical radius inequalities and their applications Adv. Oper. Theory 47 435-457
  • [6] Bani-Domi W(2020)Some improvement of numerical radius inequalities of operators and operator matrices Linear Multilinear Algebra 17 413-416
  • [7] Kittaneh F(2021)A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications Bull. Iran. Math. Soc. 115 535-544
  • [8] Bhunia P(1966)On majorization, factorization and range inclusion of operators in Hilbert space Proc. Am. Math. Soc. 591 299-321
  • [9] Paul K(2020)A note on the A-numerical radius of operators in semi-Hilbert spaces Arch. Math. 470 216-227
  • [10] Nayak RK(2020)Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces Linear Algebra Appl. 6 1-128