Canonical transformations of skew-normal variates

被引:0
作者
Nicola Loperfido
机构
[1] Università di Urbino “Carlo Bo”,Facoltà di Economia
来源
TEST | 2010年 / 19卷
关键词
Independent component analysis; Normalizing transformations; Principal components analysis; Skewness; Kurtosis; 62F03; 62E17; 62P25;
D O I
暂无
中图分类号
学科分类号
摘要
Conditions are given for linear functions of skew-normal random vectors to maximize skewness and kurtosis. As a direct implication, several measures of their multivariate skewness and kurtosis are shown to be equivalent. An estimator of the shape parameter with good statistical properties is also considered. These results are strictly related to canonical forms of skew-normal distributions and linear transformations to normality.
引用
收藏
页码:146 / 165
页数:19
相关论文
共 39 条
  • [21] Oja E(2000)Cluster identification using projections J Appl Stat 27 859-870
  • [22] Kotz S(2003)Problems of inference for Azzalini’s skew-normal distribution Can J Stat 31 129-150
  • [23] Vicari D(undefined)A new class of distributions with applications to Bayesian regression models undefined undefined undefined-undefined
  • [24] Kuriki S(undefined)undefined undefined undefined undefined-undefined
  • [25] Takemura A(undefined)undefined undefined undefined undefined-undefined
  • [26] Machado SG(undefined)undefined undefined undefined undefined-undefined
  • [27] Malkovich JF(undefined)undefined undefined undefined undefined-undefined
  • [28] Afifi AA(undefined)undefined undefined undefined undefined-undefined
  • [29] Mardia KV(undefined)undefined undefined undefined undefined-undefined
  • [30] Mateu-Figueras G(undefined)undefined undefined undefined undefined-undefined