A hierarchical a posteriori error estimator for the Reduced Basis Method

被引:0
|
作者
Stefan Hain
Mario Ohlberger
Mladjan Radic
Karsten Urban
机构
[1] Ulm University,Institute for Numerical Mathematics
[2] University of Münster,Applied Mathematics
来源
关键词
Reduced Basis Method; A posteriori error estimator; Hierarchical error estimator; 65N30; 65N15; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant—may become infeasible.
引用
收藏
页码:2191 / 2214
页数:23
相关论文
共 50 条
  • [31] Reduced basis approximation and a posteriori error estimation for stress intensity factors
    Huynh, D. B. P.
    Patera, A. T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (10) : 1219 - 1259
  • [32] REDUCED BASIS METHODS AND A POSTERIORI ERROR ESTIMATORS FOR HEAT TRANSFER PROBLEMS
    Rozza, G.
    Nguyen, C. N.
    Patera, A. T.
    Deparis, S.
    HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 753 - 762
  • [33] REDUCED BASIS METHOD AND A POSTERIORI ERROR ESTIMATION FOR PARAMETRIZED LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS
    Dede, Luca
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 997 - 1019
  • [34] A posteriori error estimator for harmonic A-φ formulation
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 32 (04) : 1219 - 1229
  • [35] A posteriori error estimator for finite volume methods
    Agouzal, A
    Oudin, F
    APPLIED MATHEMATICS AND COMPUTATION, 2000, 110 (2-3) : 239 - 250
  • [36] An a posteriori error estimator for model adaptivity in electrocardiology
    Mirabella, L.
    Nobile, F.
    Veneziani, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) : 2727 - 2737
  • [37] L∞-a posteriori error estimator for elliptic equations
    Agouzal, A
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (05) : 411 - 415
  • [38] Posteriori error estimator for linear elliptic problem
    Chinviriyasit, S.
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 420 - +
  • [39] An Anisotropic Posteriori Error Estimator of Bilinear Element
    YIN Li~(1
    2.Department of Mathematics
    数学季刊, 2007, (04) : 492 - 499
  • [40] An a posteriori error estimator for the FEM in nonlinear elastostatics
    Schmidt, JG
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (06): : 2038 - 2057