A hierarchical a posteriori error estimator for the Reduced Basis Method

被引:0
|
作者
Stefan Hain
Mario Ohlberger
Mladjan Radic
Karsten Urban
机构
[1] Ulm University,Institute for Numerical Mathematics
[2] University of Münster,Applied Mathematics
来源
关键词
Reduced Basis Method; A posteriori error estimator; Hierarchical error estimator; 65N30; 65N15; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant—may become infeasible.
引用
收藏
页码:2191 / 2214
页数:23
相关论文
共 50 条
  • [21] A POSTERIORI ERROR ESTIMATOR FOR OBSTACLE PROBLEMS
    Weiss, Alexander
    Wohlmuth, Barbara I.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05): : 2627 - 2658
  • [22] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    ScienceChina(Mathematics), 2013, 56 (05) : 888 - 901
  • [23] Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method
    Maxim, Andrei
    NUMERISCHE MATHEMATIK, 2007, 106 (02) : 225 - 253
  • [24] Asymptotic exactness of an a posteriori error estimator based on the equilibrated residual method
    Andrei Maxim
    Numerische Mathematik, 2007, 106 : 225 - 253
  • [25] An a posteriori error estimator for a LPS method for Navier-Stokes equations
    Araya, Rodolfo
    Rebolledo, Ramiro
    APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 179 - 195
  • [26] A posteriori error estimator and an adaptive technique in meshless finite points method
    Angulo, A.
    Perez Pozo, L.
    Perazzo, F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (11) : 1322 - 1338
  • [27] AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Braess, D.
    Fraunholz, T.
    Hoppe, R. H. W.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2121 - 2136
  • [28] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [29] A POSTERIORI ERROR ESTIMATOR AND ERROR CONTROL FOR CONTACT PROBLEMS
    Weiss, Alexander
    Wohlmuth, Barbara I.
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1237 - 1267
  • [30] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900