A hierarchical a posteriori error estimator for the Reduced Basis Method

被引:0
|
作者
Stefan Hain
Mario Ohlberger
Mladjan Radic
Karsten Urban
机构
[1] Ulm University,Institute for Numerical Mathematics
[2] University of Münster,Applied Mathematics
来源
关键词
Reduced Basis Method; A posteriori error estimator; Hierarchical error estimator; 65N30; 65N15; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
In this contribution, we are concerned with tight a posteriori error estimation for projection-based model order reduction of inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} stable parameterized variational problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin framework, where the reduced approximation spaces are constructed by the (weak) greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator which evaluates the difference of two reduced approximations of different accuracy. Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that the hierarchical error estimator is sharp with efficiency index close to one, if the Kolmogorov N-with decays fast for the underlying problem and if a suitable saturation assumption for the reduced approximation is satisfied. We investigate the tightness of the hierarchical a posteriori estimator both from a theoretical and numerical perspective. For the respective approximation with higher accuracy, we study and compare basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experiments indicate the efficiency for both, the construction of a reduced basis using the hierarchical error estimator in a greedy algorithm, and for tight online certification of reduced approximations. This is particularly relevant in cases where the inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant may become small depending on the parameter. In such cases, a standard residual-based error estimator—complemented by the successive constrained method to compute a lower bound of the parameter dependent inf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\inf $\end{document}-sup\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup $\end{document} constant—may become infeasible.
引用
收藏
页码:2191 / 2214
页数:23
相关论文
共 50 条
  • [1] A hierarchical a posteriori error estimator for the Reduced Basis Method
    Hain, Stefan
    Ohlberger, Mario
    Radic, Mladjan
    Urban, Karsten
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2191 - 2214
  • [2] Multilevel a posteriori error estimator for greedy reduced basis algorithms
    Certikova, Marta
    Gaynutdinova, Liya
    Pultarova, Ivana
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [3] Multilevel a posteriori error estimator for greedy reduced basis algorithms
    Marta Čertíková
    Liya Gaynutdinova
    Ivana Pultarová
    SN Applied Sciences, 2020, 2
  • [4] Accurate a posteriori error evaluation in the reduced basis method
    Casenave, Fabien
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 539 - 542
  • [5] A NUMERICALLY STABLE A POSTERIORI ERROR ESTIMATOR FOR REDUCED BASIS APPROXIMATIONS OF ELLIPTIC EQUATIONS
    Buhr, Andreas
    Engwer, Christian
    Ohlberger, Mario
    Rave, Stephan
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 4094 - 4102
  • [6] Hierarchical robust a posteriori error estimator for a singularly perturbed problem
    Achchab, B
    Achchab, S
    Agouzal, A
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) : 95 - 100
  • [7] A posteriori global error estimator based on the error in the constitutive relation for reduced basis approximation of parametrized linear elastic problems
    Gallimard, L.
    Ryckelynck, D.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4271 - 4284
  • [8] A STATIC CONDENSATION REDUCED BASIS ELEMENT METHOD: APPROXIMATION AND A POSTERIORI ERROR ESTIMATION
    Dinh Bao Phuong Huynh
    Knezevic, David J.
    Patera, Anthony T.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 213 - 251
  • [9] A POSTERIORI ERROR ANALYSIS OF THE REDUCED BASIS METHOD FOR NONAFFINE PARAMETRIZED NONLINEAR PDEs
    Canuto, Claudio
    Tonn, Timo
    Urban, Karsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2001 - 2022
  • [10] A posteriori error estimator for hierarchical models for elastic bodies with thin domain
    Cho, JR
    STRUCTURAL ENGINEERING AND MECHANICS, 1999, 8 (05) : 513 - 529