Date palm (Phoenix dactylifera L.), a monocotyledonous species of the Arecaceae family, is widely cultivated in the arid regions of the Middle East and North Africa. Considering the prolonged generation cycle, the dioecious nature of date palm trees, and high heterozygosity, the traditional breeding approaches in date palm are lengthy and laborious, and numerous crosses and back-crosses all have led to intangible advancement in date palm breeding. In recent years, the powerful potential of biotechnology has been considered for resolving fundamental difficulties associated with date palm breeding. Plant tissue culture, an important application of biotechnology, is an essential tool for vegetative propagation and a prerequisite for genetic modification. Genomic studies and molecular tools are integrated with modern plant breeding programs for precise determination of genetic diversity, identification of desired traits, germplasm conservation, and genetic drift control. This technology clarifies how the genome works in a specific evolutionary or environmental condition, determines relationships between genes, identifies the role of coding and non-coding parts of the genome, and identifies key points in regulating evolutionary processes and responding to plant internal and external factors. A comprehensive and clear picture of functional genomics pave the way for plant genetic engineering to improve the desired traits. This review surveys the recent approaches and applications of biotechnology in date palm breeding.