Asymptotic Invertibility and the Collective Asymptotic Spectral Behavior of Generalized One-Dimensional Discrete Convolutions

被引:0
作者
O. N. Zabroda
I. B. Simonenko
机构
[1] Rostov State University,Department of Mechanics and Mathematics
来源
Functional Analysis and Its Applications | 2004年 / 38卷
关键词
asymptotic invertibility; matrix; operator; spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic invertibility as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \to+ \infty $$ \end{document} of matrices of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha _{kj}^{(n)}= a(k/n,j/n,k - j)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\beta _{kj}^{(n)}= b(k/E(n),j/E(n),k - j)$$ \end{document}, where a and b are functions defined on the sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$[0,1] \times [0,1] \times \mathbb{Z}{\text{ and [0, + }}\infty {\text{)}} \times {\text{[0, + }}\infty {\text{)}} \times \mathbb{Z}{\text{, respectively, }}E(n) \to+ \infty ,{\text{ and }}n/E(n) \to+ \infty $$ \end{document}. The joint asymptotic behavior of the spectrum of these matrices is analyzed.
引用
收藏
页码:65 / 66
页数:1
相关论文
共 6 条
  • [1] Gokhberg I. T.(1965)undefined Doklady Akad. Nauk SSSR 165 268-271
  • [2] Fel'dman I. A.(1976)undefined Adv. Math. 21 1-29
  • [3] Widom H.(2001)undefined Anal. Appl. 7 71-92
  • [4] Ehrhardt T.(undefined)undefined undefined undefined undefined-undefined
  • [5] Shao B.(undefined)undefined undefined undefined undefined-undefined
  • [6] Fourier J.(undefined)undefined undefined undefined undefined-undefined