Superlinear Neumann problems with the p-Laplacian plus an indefinite potential

被引:0
作者
Genni Fragnelli
Dimitri Mugnai
Nikolaos S. Papageorgiou
机构
[1] Università di Bari,Dipartimento di Matematica
[2] Università di Perugia,Dipartimento di Matematica e Informatica
[3] National Technical University,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2017年 / 196卷
关键词
-Laplacian; Superlinear reaction; Multiple solutions; Critical groups; Competing nonlinearities; Bifurcation theorem; Indefinite potential; Neumann problem; 35J20; 35J65; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Neumann problems driven by the p-Laplacian plus an indefinite potential and with a superlinear reaction which need not satisfy the Ambrosetti–Rabinowitz condition. First, we prove an existence theorem, and then, under stronger conditions on the reaction, we prove a multiplicity theorem producing three nontrivial solutions. Then, we examine parametric problems with competing nonlinearities (concave and convex terms). We show that for all small values of the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, the problem has five nontrivial solutions and if p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} (semilinear equation), there are six nontrivial solutions. Finally, we prove a bifurcation result describing the set of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} varies.
引用
收藏
页码:479 / 517
页数:38
相关论文
共 57 条
[1]  
Ambrosetti A(1994)Combined effects of concave and convex nonlinearities in some elliptic problems J. Funct. Anal. 122 519-543
[2]  
Brezis H(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[3]  
Cerami G(1993) versus C. R. Acad. Sci. Paris Sér. I 317 465-472
[4]  
Ambrosetti A(2001) local minimizers Electron. J. Differ. Equ. 2001 1-9
[5]  
Rabinowitz P(2009)Eigenvalue problems for the Nonlinear Differ. Equ. Appl. (NoDEA) 16 469-491
[6]  
Brezis H(2010)-Laplacian with indefinite weights Proc. Am. Math. Soc. 138 3551-3567
[7]  
Nirenberg L(1983)A weighted eigenvalue problem for the Nonlinear Anal. 7 827-850
[8]  
Cuesta M(2006)-Laplacian plus a potential Commun. Pure Appl. Anal. 5 675-690
[9]  
Cuesta M(2009)An optimization problem for the first weighted eigenvalue problem plus a potential Discrete Cont. Dyn. Syst. 24 405-440
[10]  
Quoirin HR(2000) local regularity of weak solutions of degenerate elliptic equations Commun. Contemp. Math. 2 385-404