Decimated little brown bats show potential for adaptive change

被引:43
作者
Auteri, Giorgia G. [1 ,2 ]
Knowles, L. Lacey [1 ,2 ]
机构
[1] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Museum Zool, Ann Arbor, MI 48109 USA
关键词
WHITE-NOSE SYNDROME; PAIRWISE RELATEDNESS; MYOTIS-LUCIFUGUS; NITRIC-OXIDE; R PACKAGE; TOOL SET; POPULATION; ADAPTATION; INFERENCE; DISEASE;
D O I
10.1038/s41598-020-59797-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The degree to which species can rapidly adapt is key to survival in the face of climatic and other anthropogenic changes. For little brown bats (Myotis lucifugus), whose populations have experienced declines of over 90% because of the introduced fungal pathogen that causes white-nose syndrome (WNS), survival of the species may ultimately depend upon its capacity for adaptive change. Here, we present evidence of selectively driven change (adaptation), despite dramatic nonadaptive genomic shifts (genetic drift) associated with population declines. We compared the genetic makeups of wild survivors versus non-survivors of WNS, and found significant shifts in allele frequencies of genes associated with regulating arousal from hibernation (GABARB1), breakdown of fats (cGMP-PK1), and vocalizations (FOXP2). Changes at these genes are suggestive of evolutionary adaptation, given that WNS causes bats to arouse with unusual frequency from hibernation, contributing to premature depletion of fat reserves. However, whether these putatively adaptive shifts in allele frequencies translate into sufficient increases in survival for the species to rebound in the face of WNS is unknown.
引用
收藏
页数:10
相关论文
共 92 条
[1]   THE INVASION, PERSISTENCE AND SPREAD OF INFECTIOUS-DISEASES WITHIN ANIMAL AND PLANT-COMMUNITIES [J].
ANDERSON, RM ;
MAY, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1986, 314 (1167) :533-570
[2]  
[Anonymous], NON TRADITIONAL REF
[3]  
Anthony E.L.P., 1988, P47
[4]  
Auteri A, 2015, MICHIGAN BIRDS NATUR, V22, P225
[5]   The genomic signature of dog domestication reveals adaptation to a starch-rich diet [J].
Axelsson, Erik ;
Ratnakumar, Abhirami ;
Arendt, Maja-Louise ;
Maqbool, Khurram ;
Webster, Matthew T. ;
Perloski, Michele ;
Liberg, Olof ;
Arnemo, Jon M. ;
Hedhammar, Ake ;
Lindblad-Toh, Kerstin .
NATURE, 2013, 495 (7441) :360-364
[6]   Adaptation and speciation:: what can Fst tell us? [J].
Beaumont, MA .
TRENDS IN ECOLOGY & EVOLUTION, 2005, 20 (08) :435-440
[7]   Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America [J].
Berger, L ;
Speare, R ;
Daszak, P ;
Green, DE ;
Cunningham, AA ;
Goggin, CL ;
Slocombe, R ;
Ragan, MA ;
Hyatt, AD ;
McDonald, KR ;
Hines, HB ;
Lips, KR ;
Marantelli, G ;
Parkes, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :9031-9036
[8]   Bat White-Nose Syndrome: An Emerging Fungal Pathogen? [J].
Blehert, David S. ;
Hicks, Alan C. ;
Behr, Melissa ;
Meteyer, Carol U. ;
Berlowski-Zier, Brenda M. ;
Buckles, Elizabeth L. ;
Coleman, Jeremy T. H. ;
Darling, Scott R. ;
Gargas, Andrea ;
Niver, Robyn ;
Okoniewski, Joseph C. ;
Rudd, Robert J. ;
Stone, Ward B. .
SCIENCE, 2009, 323 (5911) :227-227
[9]  
Broad Institute, 2008, 29 MAMM PROJ
[10]  
Bushnell B., 2014, Technical report