Dedekind η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-function identities of level 6 and an approach towards colored partitions

被引:0
作者
B. R. Srivatsa Shruthi
机构
[1] Manipal Academy of Higher Education,Department of Mathematics, Manipal Institute of Technology
关键词
Colored partitions; Dedekind ; -function; Modular equations; Theta functions; Primary 11P83; Secondary 05A15; 05A17;
D O I
10.1007/s40590-021-00389-1
中图分类号
学科分类号
摘要
Somos conjectured thousands of Dedekind η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-function identities of various levels, around 6200 in number. He did so using computational evidence but has not sought to provide any proof for these identities. In this paper, we prove level 6 of Somos’s Dedekind η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-function identities containing five terms in two methods. Further, as an application of these identities, we deduce colored partitions for the same.
引用
收藏
相关论文
共 50 条
[31]   A Note on Arakawa–Kaneko Zeta Values and Kaneko–Tsumura η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Values [J].
Fan Luo ;
Xin Si .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46 (1)
[37]   Boros integral involving the class of polynomials and incomplete ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}-functions [J].
Dinesh Kumar ;
Frédéric Ayant ;
D. L. Suthar ;
Poonam Nirwan ;
Mina Kumari .
Proceedings of the Indian National Science Academy, 2025, 91 (1) :325-332
[39]   Remarks on Rawnsley’s ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varepsilon }$$\end{document}-function on the Fock–Bargmann–Hartogs domains [J].
Huan Yang ;
Enchao Bi .
Archiv der Mathematik, 2019, 112 (4) :417-427
[40]   Powers of Jacobi triple product, Cohen’s numbers and the Ramanujan Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta }$$\end{document}-function [J].
Valery Gritsenko ;
Haowu Wang .
European Journal of Mathematics, 2018, 4 (2) :561-584