The Grassmannian and the twistor string: connecting all trees in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} SYM

被引:0
|
作者
Jacob L. Bourjaily
Jaroslav Trnka
Anastasia Volovich
Congkao Wen
机构
[1] Institute for Advanced Study,School of Natural Sciences
[2] Princeton University,Department of Physics
[3] Brown University,Department of Physics
关键词
Supersymmetry and Duality; Supersymmetric gauge theory; Gauge Symmetry; String Duality;
D O I
10.1007/JHEP01(2011)038
中图分类号
学科分类号
摘要
We present a new, explicit formula for all tree-level amplitudes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills. The formula is written as a certain contour integral of the connected prescription of Witten’s twistor string, expressed in link variables. A very simple deformation of the integrand gives directly the Grassmannian integrand proposed in [1] together with the explicit contour of integration. The integral is derived by iteratively adding particles to the Grassmannian integral, one particle at a time, and makes manifest both parity and soft limits. The formula is shown to be related to that of [2], and generalizes the results of [3, 4] for NMHV and N2MHV to all N(k−2)MHV tree amplitudes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super Yang-Mills.
引用
收藏
相关论文
共 50 条