Complemented modular lattices with involution and orthogonal geometry

被引:0
作者
Christian Herrmann
机构
[1] TUD FB4,
来源
Algebra universalis | 2009年 / 61卷
关键词
06C05; 06C20; 51A50; complemented modular lattice; involution; orthogonal geometry;
D O I
暂无
中图分类号
学科分类号
摘要
With each orthogeometry (P, ⊥) we associate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {L}}(P, \bot)}$$\end{document}, a complemented modular lattice with involution (CMIL), consisting of all subspaces X and X⊥ such that dim X < ℵ0, and we study its rôle in decompositions of (P, ⊥) as directed (resp., disjoint) union. We also establish a 1–1 correspondence between ∃-varieties \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} of CMILs with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} generated by its finite dimensional members and ‘quasivarieties’ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} of orthogeometries: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} consists of the CMILs representable within some geometry from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document} of the (P, ⊥) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {L}}(P, \bot) \in {\mathcal {V}}}$$\end{document}. Here,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} is recursively axiomatizable if and only if so is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}$$\end{document}. It follows that the equational theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {V}}$$\end{document} is decidable provided that the equational theories of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{{\mathbb {L}}(P, \bot)\, |\, (P, \bot) \in \mathcal {G}, {\rm{dim}} P = n\}}$$\end{document} are uniformly decidable.
引用
收藏
相关论文
共 16 条
  • [1] Baker K.A.(1974)From a lattice to its ideal lattice Algebra Universalis 4 250-258
  • [2] Hales A.W.(1992)A finitely generated modular ortholattice Canad. Math. Bull. 35 29-33
  • [3] Bruns G.(1993)Free and residually artinian regular rings J. Algebra 156 407-432
  • [4] Roddy M.(1999)Proatomic modular ortholattices: Representational and equational theory Note di matematica e fisica 12 55-88
  • [5] Goodearl K.R.(2007)Existence varieties of regular rings and complemented modular lattices J. Algebra 314 235-251
  • [6] Menal P.(1999)On existence varieties of Semigroup Forum 59 470-521
  • [7] Moncasi J.(1977)-solid semigroups J. Algebra 48 305-320
  • [8] Herrmann C.(1977)Subprojective lattices and projective geometry Archiv der Math. 28 233-237
  • [9] Roddy M.S.(undefined)Vollständige geometrische Verbände mit Polarität undefined undefined undefined-undefined
  • [10] Herrmann C.(undefined)undefined undefined undefined undefined-undefined