The Structure of Global Attractors for Non-autonomous Perturbations of Gradient-Like Dynamical Systems

被引:0
作者
David Cheban
机构
[1] State University of Moldova,Department of Mathematics and Informatics
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
Global attractor; Gradient-like dynamical systems; Non-autonomous perturbations; Chain-recurrent motions; Almost periodic; Almost automorphic solutions; Primary: 34C27; 35B15; 35B20; 35B41; 37B35; 37b55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give the complete description of the structure of compact global (forward) attractors for non-autonomous perturbations of autonomous gradient-like dynamical systems under the assumption that the original autonomous system has a finite number of hyperbolic stationary solutions. We prove that the perturbed non-autonomous (in particular τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent in the sense of Birkhoff) system has exactly the same number of invariant sections (in particular the perturbed systems has the same number of τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent in the sense of Birkhoff solutions). It is shown the compact global (forward) attractor of non-autonomous perturbed system coincides with the union of unstable manifolds of this finite number of invariant sections.
引用
收藏
页码:1113 / 1138
页数:25
相关论文
共 14 条
  • [1] Babin AV(1983)Regular attractors of semigroups and evolution equations Journal of Mathematics Pure and Applications 62 441-491
  • [2] Vishik MI(2008)Levitan Almost Periodic and Almost Automorphic Solutions of $V$-monotone Differential Equations J. Dynamics and Differential Equations 20 669-697
  • [3] Cheban DN(2001)Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems J. Dyn. Diff. Eqns 13 107-131
  • [4] Hirsch MW(1995)Chain recurrence, semiflows, and gradients Journal of Dynamics and Differential Equations 7 437-456
  • [5] Smith HL(2007)Morse Decomposition of Semiflows on Topologicl Spaces Journal of Dynamics and Differential Equations 19 215-241
  • [6] Zhao X-Q(1994)Dichotomies for linear evoltionary equations in banach spaces J. Differ. Equ. 113 17-67
  • [7] Hurley M(2013)Regular attractors and nonautonomous perturbations of them Sb. Math. 204 1-42
  • [8] Patrao M(2011)Almost periodic dynamics of perturbed infinite-dimensional dynamical systems Nonlinear Anal. 74 7252-7260
  • [9] Sacker RJ(undefined)undefined undefined undefined undefined-undefined
  • [10] Sell GR(undefined)undefined undefined undefined undefined-undefined