Incremental Voronoi Diagrams

被引:0
|
作者
Sarah R. Allen
Luis Barba
John Iacono
Stefan Langerman
机构
[1] Carnegie Mellon University,Computer Science Department
[2] ETH Zürich,Department of Computer Science
[3] New York University,Department of Computer Science and Engineering, Tandon School of Engineering
[4] Université Libre de Bruxelles,Départment d’Informatique
来源
Discrete & Computational Geometry | 2017年 / 58卷
关键词
Voronoi diagrams; Incremental; Grappa tree; Link-cut; 68U05; 52C45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram (and several variants thereof) of a set S of n sites in the plane as sites are added to the set. To that effect, we define a general update operation for planar graphs that can be used to model the incremental construction of several variants of Voronoi diagrams as well as the incremental construction of an intersection of halfspaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. We show that the amortized number of edge insertions and removals needed to add a new site to the Voronoi diagram is O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document}. A matching Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\sqrt{n})$$\end{document} combinatorial lower bound is shown, even in the case where the graph representing the Voronoi diagram is a tree. This contrasts with the O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log {n})$$\end{document} upper bound of Aronov et al. (LATIN 2006: Theoretical Informatics. Lecture Notes in Computer Science, Springer, Berlin, 2006) for farthest-point Voronoi diagrams in the special case where the points are inserted in clockwise order along their convex hull. We then present a semi-dynamic data structure that maintains the Voronoi diagram of a set S of n sites in convex position. This data structure supports the insertion of a new site p (and hence the addition of its Voronoi cell) and finds the asymptotically minimal number K of edge insertions and removals needed to obtain the diagram of S∪{p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \cup \{p\}$$\end{document} from the diagram of S, in time O(Kpolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(K\,\mathrm {polylog}\ n)$$\end{document} worst case, which is O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\;\mathrm {polylog}\ n)$$\end{document} amortized by the aforementioned combinatorial result. The most distinctive feature of this data structure is that the graph of the Voronoi diagram is maintained explicitly at all times and can be retrieved and traversed in the natural way; this contrasts with other known data structures supporting nearest neighbor queries. Our data structure supports general search operations on the current Voronoi diagram, which can, for example, be used to perform point location queries in the cells of the current Voronoi diagram in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time, or to determine whether two given sites are neighbors in the Delaunay triangulation.
引用
收藏
页码:822 / 848
页数:26
相关论文
共 50 条
  • [31] Voronoi Diagrams and Polynomial Root-Finding
    Kalantari, Bahman
    2009 6TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS (ISVD 2009), 2009, : 31 - 40
  • [32] On the complexity of higher order abstract Voronoi diagrams
    Bohler, Cecilia
    Cheilaris, Panagiotis
    Klein, Rolf
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (08): : 539 - 551
  • [33] Voronoi Diagrams for Senior-Friendly Cities
    Figurska, Marta
    Dawidowicz, Agnieszka
    Zysk, Elzbieta
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (12)
  • [34] Polygon visibility ordering via Voronoi diagrams
    Fukushige, Shinichi
    Suzuki, Hiromasa
    VISUAL COMPUTER, 2007, 23 (07): : 503 - 511
  • [35] Spatial dynamics of team sports exposed by Voronoi diagrams
    Fonseca, Sofia
    Milho, Joao
    Travassos, Bruno
    Araujo, Duarte
    HUMAN MOVEMENT SCIENCE, 2012, 31 (06) : 1652 - 1659
  • [36] A provably complete exploration strategy by constructing Voronoi diagrams
    Kim, Jonghoek
    Zhang, Fumin
    Egerstedt, Magnus
    AUTONOMOUS ROBOTS, 2010, 29 (3-4) : 367 - 380
  • [37] The dual Voronoi diagrams with respect to representational Bregman divergences
    Nielsen, Frank
    Nock, Richard
    2009 6TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS (ISVD 2009), 2009, : 71 - +
  • [38] Bifurcations of Voronoi diagrams and its application to braid theory
    Saji, K
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (02) : 249 - 257
  • [39] Voronoi diagrams for polygon-offset distance functions
    Barequet, G
    Dickerson, MT
    Goodrich, MT
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 200 - 209
  • [40] Voronoi diagrams with barriers and on polyhedra for minimal path planning
    Franklin, W. Randolph
    Akman, Varol
    Verrilli, Colin
    VISUAL COMPUTER, 1985, 1 (02): : 133 - 150