Approximation of the Distribution of the Supremum of a Centered Random Walk. Application to the Local Score

被引:0
|
作者
M. P. Etienne
P. Vallois
机构
[1] Laboratoire Statistique et Genome,Institut de Mathématiques Elie Cartan
[2] Université Henri Poincaré,undefined
来源
Methodology And Computing In Applied Probability | 2004年 / 6卷
关键词
Skorokhod's embedding; random walk; local score; maximum;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Xn)n ≥ 0 be a real random walk starting at 0, with centered increments bounded by a constant K. The main result of this study is: |P(Sn √ n ≥ x)−P(σ sup0 ≤ u ≤ 1Bu ≥ x)|≤ C(n,K)√ ∈ n/n, where x ≥ 0, σ2 is the variance of the increments, Sn is the supremum at time n of the random walk, (Bu,u≥ 0) is a standard linear Brownian motion and C(n,K) is an explicit constant. We also prove that in the previous inequality Sn can be replaced by the local score and sup0 ≤ u ≤ 1 Bu by sup0 ≤ u ≤ 1|Bu|.
引用
收藏
页码:255 / 275
页数:20
相关论文
共 11 条