Characterizing Empirical Mode Decomposition Algorithm Using Signal Processing Techniques

被引:0
作者
P. Venkatappareddy
Brejesh Lall
机构
[1] Indian Institute of Technology Delhi,Department of Electrical Engineering
[2] Indian Institute of Technology Delhi,School of Telecommunication Technology and Management
来源
Circuits, Systems, and Signal Processing | 2018年 / 37卷
关键词
Empirical mode decomposition; Even mirror Fourier nonlinear filter; Intrinsic mode function; Local extrema; Relu; Signum; Sparse-aware LMS; Zero crossings;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a model for empirical mode decomposition algorithm to represent nonlinear and nonstationary data. Two threshold operators (Signum and Relu) and the set of fundamental operators of a linear time invariant system (viz. delay, summer, and scalar multiplier) are used to completely characterize the proposed model. Models for finding number of zero crossings and number of local extrema of residual intrinsic mode function are also discussed. These representations are also based on the same block of elements, n-bit asynchronous up-counter and binary to decimal conversion. We obtain a closed-form expression for residual intrinsic mode functions to decompose the input signal using the proposed model. Performance of the proposed model is analyzed and discussed in terms of orthogonality index and percentage error in energy. Also, linear-in-the-parameter model for the two threshold operators is discussed in this paper.
引用
收藏
页码:2969 / 2996
页数:27
相关论文
共 50 条
  • [31] A New ultrasonic signal processing scheme for detecting echoes of different spectral characteristics in concrete using empirical mode decomposition
    S. Haddad
    A. Bouhadjera
    M. Grimes
    T. Benkedidah
    Russian Journal of Nondestructive Testing, 2011, 47 : 642 - 649
  • [32] A New ultrasonic signal processing scheme for detecting echoes of different spectral characteristics in concrete using empirical mode decomposition
    Haddad, S.
    Bouhadjera, A.
    Grimes, M.
    Benkedidah, T.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2011, 47 (09) : 642 - 649
  • [33] EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine
    Bajaj, Varun
    Pachori, Ram Bilas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 2, 2012, 131 : 623 - 635
  • [34] Weak Signal Sensing using Empirical Mode Decomposition and Stochastic Data Reordering
    Roy, Arnab
    Doherty, John F.
    2011 - MILCOM 2011 MILITARY COMMUNICATIONS CONFERENCE, 2011, : 37 - 41
  • [35] Ensemble Median Empirical Mode Decomposition for Emotion Recognition Using EEG Signal
    Samal, Priyadarsini
    Hashmi, Mohammad Farukh
    IEEE SENSORS LETTERS, 2023, 7 (05)
  • [36] A weighted bio-signal denoising approach using empirical mode decomposition
    Lahmiri S.
    Boukadoum M.
    Biomedical Engineering Letters, 2015, 5 (02) : 131 - 139
  • [37] Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach
    Cheema, Amandeep
    Singh, Mandeep
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 49 : 493 - 505
  • [38] Extreme condition strain signal reliability assessment using empirical mode decomposition
    Nasir, N. N. M.
    Abdullah, S.
    Singh, S. S. K.
    Haris, S. M.
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2018 (MERD), 2018, : 23 - 24
  • [39] Differential absorption LIDAR signal denoising using empirical mode decomposition technique
    Jindal, M. K.
    Mainuddin, Mainuddin
    Veerabuthiran, S.
    Ashraf, M.
    Jindal, N.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)
  • [40] Differential absorption LIDAR signal denoising using empirical mode decomposition technique
    M. K. Jindal
    Mainuddin Mainuddin
    S. Veerabuthiran
    M. Ashraf
    N. Jindal
    Optical and Quantum Electronics, 2023, 55