Some Ramanujan-type circular summation formulas

被引:0
|
作者
Ji-Ke Ge
Qiu-Ming Luo
机构
[1] Chongqing University of Science and Technology,School of Intelligent Technology and Engineering
[2] Chongqing Normal University,Department of Mathematics
关键词
Elliptic functions; Ramanujan-type circular summation; Theta functions; Theta function identities; 11F27; 11F20; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give two Ramanujan-type circular summation formulas by applying the way of elliptic functions and the properties of theta functions. As applications, we obtain the corresponding imaginary transformation formulas for Ramanujan-type circular summations and some theta function identities.
引用
收藏
相关论文
共 50 条
  • [1] Some Ramanujan-type circular summation formulas
    Ge, Ji-Ke
    Luo, Qiu-Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Some extensions for Ramanujan’s circular summation formulas and applications
    Ji-Ke Ge
    Qiu-Ming Luo
    The Ramanujan Journal, 2021, 56 : 491 - 518
  • [3] Some extensions for Ramanujan's circular summation formulas and applications
    Ge, Ji-Ke
    Luo, Qiu-Ming
    RAMANUJAN JOURNAL, 2021, 56 (02): : 491 - 518
  • [4] GAUSS SUMMATION AND RAMANUJAN-TYPE SERIES FOR 1/π
    Liu, Zhi-Guo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (02) : 289 - 297
  • [5] Two hypergeometric summation theorems and Ramanujan-type series
    Liu, Hongmei
    Qi, Shuhua
    Zhang, You
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) : 905 - 910
  • [6] q-Analogues of two Ramanujan-type formulas for 1/π
    Guo, Victor J. W.
    Liu, Ji-Cai
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (08) : 1368 - 1373
  • [7] q-Analogues of three Ramanujan-type formulas for 1/π
    Guo, Victor J. W.
    RAMANUJAN JOURNAL, 2020, 52 (01): : 123 - 132
  • [8] Ramanujan-type supercongruences
    Zudilin, Wadim
    JOURNAL OF NUMBER THEORY, 2009, 129 (08) : 1848 - 1857
  • [9] Ramanujan-type formulae and irrationality measures of some multiples of π
    Zudilin, WV
    SBORNIK MATHEMATICS, 2005, 196 (7-8) : 983 - 998
  • [10] Some extensions for Ramanujan's circular summation formula
    Ge, Ji-Ke
    Luo, Qiu-Ming
    arXiv, 2019,