Global Existence and Blow–up of Solutions for Parabolic Systems Involving Cross–Diffusions and Nonlinear Boundary Conditions

被引:0
|
作者
Xiu Hui Yang
Fu Cai Li
Chun Hong Xie
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Sciences
[2] Nanjing University,Department of Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Nonlinear parabolic system; Cross–diffusion; Nonlinear boundary condition; Global existence; Blow-up; 35K55; 35K60; 35B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the positive solutions of strongly coupled nonlinear parabolic systems with nonlinear boundary conditions:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {\begin{array}{*{20}l} {{u_{t} - a(u,v)\Delta u = g(u,v),} \hfill} & {{v_{t} - b(u,v)\Delta v = h(u,v),} \hfill} \\ {{\frac{{\partial u}} {{\partial \eta }} = d(u,v),} \hfill} & {{\frac{{\partial u}} {{\partial \eta }} = f(u,v).} \hfill} \\ \end{array} } \right. $$\end{document} Under appropriate hypotheses on the functions a, b, g, h, d and f, we obtain that the solutions may exist globally or blow up in finite time by utilizing upper and lower solution techniques.
引用
收藏
页码:923 / 928
页数:5
相关论文
共 50 条