In this paper, we investigate the positive solutions of strongly coupled nonlinear parabolic
systems with nonlinear boundary conditions:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\left\{ {\begin{array}{*{20}l}
{{u_{t} - a(u,v)\Delta u = g(u,v),} \hfill} & {{v_{t} - b(u,v)\Delta v = h(u,v),} \hfill} \\
{{\frac{{\partial u}}
{{\partial \eta }} = d(u,v),} \hfill} & {{\frac{{\partial u}}
{{\partial \eta }} = f(u,v).} \hfill} \\
\end{array} } \right.
$$\end{document} Under appropriate hypotheses on the functions a, b, g, h, d and f, we obtain that the solutions may
exist globally or blow up in finite time by utilizing upper and lower solution techniques.