Compactness Criteria for Fractional Integral Operators

被引:0
|
作者
Vakhtang Kokilashvili
Mieczysław Mastyło
Alexander Meskhi
机构
[1] I. Javakhishvili Tbilisi State University,Department of Mathematical Analysis A. Razmadze Mathematical Institute
[2] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
[3] Poznań,Department of Mathematics Faculty of Informatics and Control Systems
[4] Georgian Technical University,undefined
关键词
Primary 26A33; Secondary 42B35; 47B38; fractional order integrals; quasi-metric spaces; compact operator;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for the compactness of fractional integral operators from Lp}(X, μ) to Lq(X, μ) with 1 < p < q < ∞, where μ is a measure on a quasi-metric measure space X. As an application we obtain criteria for the compactness of fractional integral operators defined in weighted Lebesgue spaces over bounded domains of the Euclidean space ℝn with the Lebesgue measure, and also for the fractional integral operator associated to rectifiable curves of the complex plane.
引用
收藏
页码:1269 / 1283
页数:14
相关论文
共 50 条
  • [31] ALMOST COMPACTNESS AND DECOMPOSABILITY OF INTEGRAL-OPERATORS
    SCHACHERMAYER, W
    WEIS, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (04) : 595 - 599
  • [32] ON THE QUESTION OF AN INTENSIFIED COMPACTNESS OF INTEGRAL-OPERATORS
    IZOSOVA, LA
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1988, (01): : 105 - 106
  • [33] COMPACTNESS OF INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    LUXEMBURG, WAJ
    ZAANEN, AC
    MATHEMATISCHE ANNALEN, 1963, 149 (02) : 150 - 180
  • [34] Compactness of the commutators of homogeneous singular integral operators
    Guo XiaoLi
    Hu GuoEn
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (11) : 2347 - 2362
  • [35] A SUFFICIENT CONDITION FOR THE COMPACTNESS OF INTEGRAL-OPERATORS
    DIJKSTRA, JJ
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1984, 87 (04): : 387 - 390
  • [36] Criteria of boundedness and compactness of a class of matrix operators
    Ryskul Oinarov
    Zhanar Taspaganbetova
    Journal of Inequalities and Applications, 2012
  • [37] Criteria of boundedness and compactness of a class of matrix operators
    Oinarov, Ryskul
    Taspaganbetova, Zhanar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [38] On unified fractional integral operators
    Gupta, KC
    Soni, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (01): : 53 - 64
  • [39] ON AN INTEGRAL OF FRACTIONAL POWER OPERATORS
    Dungey, Nick
    COLLOQUIUM MATHEMATICUM, 2009, 117 (02) : 157 - 164
  • [40] Commutators with fractional integral operators
    Holmes, Irina
    Rahm, Robert
    Spencer, Scott
    STUDIA MATHEMATICA, 2016, 233 (03) : 279 - 291