Remarks on defective Fano manifolds

被引:0
作者
Ionescu P. [1 ]
Russo F. [2 ]
机构
[1] Dipartimento di Matematica e Informatica, Università degli Studi di Ferrara, Via Machiavelli, 30, Ferrara
[2] Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria, 6, Catania
关键词
Conic connected; Dual defective; Fano manifold; Local quadratic entry locus;
D O I
10.1007/s11565-017-0270-6
中图分类号
学科分类号
摘要
This note continues our previous work on special secant defective (specifically, conic connected and local quadratic entry locus) and dual defective manifolds. These are now well understood, except for the prime Fano ones. Here we add a few remarks on this case, completing the results in our papers (Russo in Math Ann 344:597–617, 2009; Ionescu and Russo in Compos Math 144:949–962, 2008; Ionescu and Russo in J Reine Angew Math 644:145–157, 2010; Ionescu and Russo in Am J Math 135:349–360, 2013; Ionescu and Russo in Math Res Lett 21:1137–1154, 2014); see also the recent book (Russo, On the Geometry of Some Special Projective Varieties, Lecture Notes of the Unione Matematica Italiana, Springer, 2016). © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:133 / 146
页数:13
相关论文
共 27 条
[11]  
Ionescu P., Russo F., Varieties with quadratic entry locus. II, Compos. Math, 144, pp. 949-962, (2008)
[12]  
Ionescu P., Russo F., Conic-connected manifolds, J. Reine Angew. Math, 644, pp. 145-157, (2010)
[13]  
Ionescu P., Russo F., Manifolds covered by lines and the Hartshorne conjecture for quadratic manifolds, Am. J. Math, 135, pp. 349-360, (2013)
[14]  
Ionescu P., Russo F., On dual defective manifolds, Math. Res. Lett, 21, pp. 1137-1154, (2014)
[15]  
Kaji H., Homogeneous projective varieties with degenerate secants, Trans. Am. Math. Soc, 351, pp. 533-545, (1999)
[16]  
Kobayashi S., Ochiai T., Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ, 13, pp. 31-47, (1973)
[17]  
Kollar J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb. vol. 32, Springer, (1996)
[18]  
Mok N., Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents, Third International Congress of Chinese Mathematicians. Part 1, 2. AMS/IP Studies in Advanced Mathematics, vol. 42, pt. 1, 2, pp. 41-61, (2008)
[19]  
Mori S., Projective manifolds with ample tangent bundle, Ann. Math, 110, pp. 593-606, (1979)
[20]  
Mukai S., Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA, 86, pp. 3000-3002, (1989)