A central limit theorem for convex sets

被引:0
作者
B. Klartag
机构
[1] Princeton University,Department of Mathematics
来源
Inventiones mathematicae | 2007年 / 168卷
关键词
Random Vector; Central Limit Theorem; Convex Body; Universal Constant; Random Subspace;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there exists a sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon_n\searrow0$\end{document} for which the following holds: Let K⊂ℝn be a compact, convex set with a non-empty interior. Let X be a random vector that is distributed uniformly in K. Then there exist a unit vector θ in ℝn, t0∈ℝ and σ>0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup_{A\subset\mathbb{R}}\left|\textit{Prob}\,\{\langle X,\theta\rangle\in A\}-\frac{1}{\sqrt{2\pi\sigma}}\int_Ae^{-\frac{(t - t_0)^2}{2\sigma^2}} dt\right|\leq\varepsilon_n,\qquad{(\ast)}$$\end{document} where the supremum runs over all measurable sets A⊂ℝ, and where 〈·,·〉 denotes the usual scalar product in ℝn. Furthermore, under the additional assumptions that the expectation of X is zero and that the covariance matrix of X is the identity matrix, we may assert that most unit vectors θ satisfy (*), with t0=0 and σ=1. Corresponding principles also hold for multi-dimensional marginal distributions of convex sets.
引用
收藏
页码:91 / 131
页数:40
相关论文
共 37 条
[1]  
Anttila M.(2003)The central limit problem for convex bodies Trans. Am. Math. Soc. 355 4723-4735
[2]  
Ball K.(1988)Logarithmically concave functions and sections of convex sets in ℝ Stud. Math. 88 69-84
[3]  
Perissinaki I.(2003)On concentration of distributions of random weighted sums Ann. Probab. 31 195-215
[4]  
Ball K.(1974)Convex measures on locally convex spaces Ark. Mat. 12 239-252
[5]  
Bobkov S.G.(2000)Asymptotics of cross sections for convex bodies Beitr. Algebra Geom. 41 437-454
[6]  
Borell C.(2002)Moment inequalities and central limit properties of isotropic convex bodies Math. Z. 240 37-51
[7]  
Brehm U.(2003)An elementary proof of a theorem of Johnson and Lindenstrauss Random Struct. Algorithms 22 60-65
[8]  
Voigt J.(1984)Asymptotics of graphical projection pursuit Ann. Stat. 12 793-815
[9]  
Brehm U.(1987)A dozen de Finetti-style results in search of a theory Ann. Inst. Henri Poincaré, Probab. Stat. 23 397-423
[10]  
Hinow P.(1997)Sections of convex bodies through their centroid Arch. Math. 69 515-522