This article investigates natural convection with double-diffusive properties numerically in a vertical bi-layered square enclosure. The cavity has two parts: one part is an isotropic and homogeneous porous along the wall, and an adjacent part is an aqueous fluid. Adiabatic, impermeable horizontal walls and constant and uniform temperatures and concentrations on other walls are maintained. To solve the governing equations, the finite element method (FEM) employed and predicted results shows the impact of typical elements of convection on double diffusion, namely the porosity thickness, cavity rotation angle, and thermal conductivity ratio. Different Darcy and Rayleigh numbers effects on heat transfer conditions were investigated, and the Nusselt number in the border of two layers was obtained. The expected results, presented as temperature field (isothermal lines) and velocity behavior in X and Y directions, show the different effects of the aforementioned parameters on double diffusion convective heat transfer. Also results show that with the increase in the thickness of the porous layer, the Nusselt number decreases, but at a thickness higher than 0.8, we will see an increase in the Nusselt number. Increasing the thermal conductivity ratio in values less than one leads to a decrease in the average Nusselt number, and by increasing that parameter from 1 to 10, the Nusselt values increase. A higher rotational angle of the cavity reduces the thermosolutal convective heat transfer, and increasing the Rayleigh and Darcy numbers, increases Nusselt. These results confirm that the findings obtained from the Finite Element Method (FEM), which is the main idea of this research, are in good agreement with previous studies that have been done with other numerical methods.
机构:
King Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
South Valley Univ, Fac Sci, Dept Math, Qena 83523, EgyptKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
Aly, Abdelraheem M.
;
论文数: 引用数:
h-index:
机构:
Raizah, Zehba
;
El-Sapa, Shreen
论文数: 0引用数: 0
h-index: 0
机构:
Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
El-Sapa, Shreen
;
Oztop, Hakan F.
论文数: 0引用数: 0
h-index: 0
机构:
Firat Univ, Technol Fac, Dept Mech Engn, Elazig, Turkey
King Abdulaziz Univ, Dept Mech Engn, Jeddah, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
Oztop, Hakan F.
;
Abu-Hamdeh, Nidal
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Mech Engn, Fac Engn, Jeddah, Saudi Arabia
King Abdulaziz Univ, KA Care Energy Res & Innovat Ctr, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
机构:
King Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
South Valley Univ, Fac Sci, Dept Math, Qena 83523, EgyptKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
Aly, Abdelraheem M.
;
论文数: 引用数:
h-index:
机构:
Raizah, Zehba
;
El-Sapa, Shreen
论文数: 0引用数: 0
h-index: 0
机构:
Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
El-Sapa, Shreen
;
Oztop, Hakan F.
论文数: 0引用数: 0
h-index: 0
机构:
Firat Univ, Technol Fac, Dept Mech Engn, Elazig, Turkey
King Abdulaziz Univ, Dept Mech Engn, Jeddah, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia
Oztop, Hakan F.
;
Abu-Hamdeh, Nidal
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Dept Mech Engn, Fac Engn, Jeddah, Saudi Arabia
King Abdulaziz Univ, KA Care Energy Res & Innovat Ctr, Jeddah 21589, Saudi Arabia
King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Abha 6141, Saudi Arabia