Provisioning a cross-domain recommender system using an adaptive adversarial network model

被引:0
作者
M. Nanthini
K. Pradeep Mohan Kumar
机构
[1] SRM Institute of Science and Technology,Department of Computing Technologies
来源
Soft Computing | 2023年 / 27卷
关键词
Recommender system; Cross-domain; Knowledge transfer; Overlapping; Data sparsity;
D O I
暂无
中图分类号
学科分类号
摘要
Recommender system (RS) aims to predict user preferences based on automatic data acquisition, and those collected data assist in achieving the final decision. However, RS suffers from data sparsity issues over the newly launched system, and the lack of time to deal with the massive data is also a challenging factor. To acquire proper outcomes, cross-domain RS intends to transfer knowledge from the specific domain with quality enriched data to help recommendations to the target domains. The entities may or may not be overlapped, and it is common for the entities of two domains to be overlapped. These overlapping entities may show variations in their target domain, and avoiding these issues leads to distorted prediction outcomes over the cross-domain RS. To address these issues, this research concentrates on modeling and efficient cross-domain RS using the generative and discriminative adversarial network (CRS-GDAN) model for kernel-based transfer modeling. Domain specific is considered to handle the feature space of overlapped entities, and transfer computation is adopted to handle the overlapping and non-overlapping entity correlation among the domains. Based on the anticipated concept, knowledge transfer is achieved rigorously even in the case of overlapping entities, thus diminishing the data sparsity issues. The experimentation is performed using an available online dataset, and the model attains a 20% better outcome than other approaches. The outcomes specify that the knowledge transfer from source to destination target is advantageous even in overlapping issues.
引用
收藏
页码:19197 / 19212
页数:15
相关论文
共 50 条
  • [11] Cross-Domain Graph Convolutions for Adversarial Unsupervised Domain Adaptation
    Zhu, Ronghang
    Jiang, Xiaodong
    Lu, Jiasen
    Li, Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 3847 - 3858
  • [12] A Cross-Domain Recommender System With Kernel-Induced Knowledge Transfer for Overlapping Entities
    Zhang, Qian
    Lu, Jie
    Wu, Dianshuang
    Zhang, Guangquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (07) : 1998 - 2012
  • [13] A Recommender System Based on Model Regularization Wasserstein Generative Adversarial Network
    Wang, Qingxian
    Huang, Qing
    Ma, Kangkang
    Zhang, Xuerui
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2043 - 2048
  • [14] A privacy-preserving framework for cross-domain recommender systems
    Ogunseyi, Taiwo Blessing
    Bo, Tang
    Yang, Cheng
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 93
  • [15] Tags and Item Features as a Bridge for Cross-Domain Recommender Systems
    Sahu, Ashish K.
    Dwivedi, Pragya
    Kant, Vibhor
    6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 : 624 - 631
  • [16] Cross-Domain Defect Detection Network
    Zhou, Zhenkang
    Lan, Chuwen
    Gao, Zehua
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 272 - 279
  • [17] Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations
    Li, Yakun
    Ren, Jiadong
    Liu, Jiaomin
    Chang, Yixin
    KNOWLEDGE-BASED SYSTEMS, 2021, 220
  • [18] A novel multiple-prototype and domain adversarial network for few-shot cross-domain fault diagnosis
    Shi, Peiming
    Dai, Siyu
    Xu, Xuefang
    Han, Dongying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)
  • [19] Adversarial Diffusion Probability Model For Cross-domain Speaker Verification Integrating Contrastive Loss
    Su, Xinmei
    Xie, Xiang
    Zhang, Fengrun
    Hu, Chenguang
    INTERSPEECH 2023, 2023, : 5336 - 5340
  • [20] A Personality-Driven Recommender System for Cross-Domain Learning Based on Holland Code Assessments
    Su, Ja-Hwung
    Liao, Yi-Wen
    Xu, Jia-Zhen
    Zhao, Yu-Wei
    SUSTAINABILITY, 2021, 13 (07)