Stability ordinates of Adams predictor-corrector methods

被引:0
作者
Michelle L. Ghrist
Bengt Fornberg
Jonah A. Reeger
机构
[1] United States Air Force Academy,Department of Mathematical Sciences
[2] University of Colorado,Department of Applied Mathematics
[3] Air Force Institute of Technology,Department of Mathematics and Statistics
来源
BIT Numerical Mathematics | 2015年 / 55卷
关键词
Adams methods; Predictor-corrector; Imaginary stability boundary; Linear multistep methods; Finite difference methods; Stability region; Stability ordinate; 65L06; 65L12; 65L20; 65M06; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
How far the stability domain of a numerical method for approximating solutions to differential equations extends along the imaginary axis indicates how useful the method is for approximating solutions to wave equations; this maximum extent is termed the imaginary stability boundary, also known as the stability ordinate. It has previously been shown that exactly half of Adams-Bashforth (AB), Adams-Moulton (AM), and staggered Adams-Bashforth methods have nonzero stability ordinates. In this paper, we consider two categories of Adams predictor-corrector methods and prove that they follow a similar pattern. In particular, if p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} is the order of the method, ABp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-AMp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} methods have nonzero stability ordinate only for p=1,2,5,6,9,10,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 1, 2, \ 5, 6,\ 9, 10, \ldots $$\end{document}, and AB(p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-$$\end{document}1)-AMp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} methods have nonzero stability ordinates only for p=3,4,7,8,11,12,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = 3, 4, \ 7, 8, \ 11, 12, \ldots $$\end{document}.
引用
收藏
页码:733 / 750
页数:17
相关论文
共 6 条
[1]  
Ghrist M(2000)Staggered time integrators for wave equations SIAM J. Num. Anal. 38 718-741
[2]  
Fornberg B(2012)Two results concerning the stability of staggered multistep methods SIAM J. Num. Anal. 50 1849-1860
[3]  
Driscoll TA(1976)A necessary condition for A-stability of multistep multiderivative methods Math. Comp. 30 739-746
[4]  
Ghrist M(undefined)undefined undefined undefined undefined-undefined
[5]  
Fornberg B(undefined)undefined undefined undefined undefined-undefined
[6]  
Jeltsch R(undefined)undefined undefined undefined undefined-undefined