Monomial isomorphisms of cyclic codes

被引:0
作者
Edward Dobson
机构
[1] Mississipi State University,Department of Mathematics and Statistics
[2] University of Primorska,undefined
[3] IAM,undefined
来源
Designs, Codes and Cryptography | 2015年 / 76卷
关键词
Cyclic code; Monomial; Permutation; Isomorphism; Equivalent; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
For codes, there are multiple notions of isomorphism. For example, we can consider isomorphisms that only permute the coordinates of codewords, or isomorphisms that not only permute the coordinates of codewords but also multiply each coordinate by a scalar (not necessarily the same scalar for each coordinate) as it permutes the coordinates. Isomorphisms of cyclic codes of the first kind have been studied in some circumstances—we will call them permutation isomorphisms—and our purpose is to begin the study of the second kind of isomorphism—which we call monomial isomorphisms—for cyclic codes. We give examples of cyclic codes that are monomially isomorphic but not permutationally isomorphic. We also show that the monomial isomorphism problem for cyclic codes of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document} reduces to the permutation isomorphism problem for cyclic codes of length n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_q$$\end{document} if and only if gcd(n,q-1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{gcd}(n,q-1) = 1$$\end{document}. Applying known results, this solves the monomial isomorphism problem for cyclic codes satisfying gcd(n,q(q-1))=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{gcd}(n,q(q-1)) = 1$$\end{document}. Additionally, we solve the monomial isomorphism problem for cyclic codes of prime length over all finite fields. Finally, our results also hold for some codes that are not cyclic.
引用
收藏
页码:257 / 267
页数:10
相关论文
共 16 条
[1]  
Babai L.(1977)Isomorphism problem for a class of point-symmetric structures Acta Math. Acad. Sci. Hung. 29 329-336
[2]  
Dobson E.(2000)Classification of vertex-transitive graphs of order a prime cubed I. Discret. Math. 224 99-106
[3]  
Godsil C.D.(1983)On Cayley graph isomorphisms Ars Comb. 15 231-246
[4]  
Hirasaka M.(2001)An elementary abelian group of rank 4 is a CI-group J. Comb. Theory Ser. A 94 339-362
[5]  
Muzychuk M.(1993)Multipliers and generalized multipliers of cyclic objects and cyclic codes J. Comb. Theory Ser. A 62 183-215
[6]  
Huffman W.C.(1980)Codes with prescribed permutation group J. Algebra 67 415-435
[7]  
Job V.(2003)The finite primitive permutation groups containing an abelian regular subgroup Proc. Lond. Math. Soc. 87 725-747
[8]  
Pless V.(1995)Ádám’s conjecture is true in the square-free case J. Comb. Theory Ser. A 72 118-134
[9]  
Knapp W.(1997)On Ádám’s conjecture for circulant graphs Discret. Math. 176 285-298
[10]  
Schmid P.(1999)On the isomorphism problem for cyclic combinatorial objects Discret. Math. 197 589-606