On a variety of Burnside ai-semirings satisfying xn≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n\approx x$$\end{document}

被引:2
|
作者
Miaomiao Ren
Xianzhong Zhao
Yong Shao
机构
[1] Northwest University,School of Mathematics
关键词
Burnside ai-semiring; Congruence; Green’s relation; Regular orthocryptogroup; Variety;
D O I
10.1007/s00233-016-9819-4
中图分类号
学科分类号
摘要
We study a variety of Burnside ai-semirings satisfying xn≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n\approx x$$\end{document}. It is shown that the multiplicative semigroup of each member of such a variety is a regular orthocryptogroup. As an application, a model of the free object in such a variety is given. Also, some subvarieties of such a variety are characterized. Thus some results obtained respectively by Ghosh et al. (Order 22:109–128, 2005) and Pastijn and Zhao (Algebra Universalis 54:301–321, 2005) are generalized and extended.
引用
收藏
页码:501 / 515
页数:14
相关论文
共 37 条