A superalgebraic interpretation of the quantization maps of Weil algebras

被引:0
作者
Yu Li
机构
[1] Nanjing University,Institute of Mathematical Science
来源
Acta Mathematica Sinica, English Series | 2008年 / 24卷
关键词
noncommutative Weil algebras; quantization; Duflo map; -differential algebras; 46L65; 17B70; 17B63; 81R25;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a Lie group whose Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} is quadratic. In the paper “the non-commutative Weil algebra”, Alekseev and Meinrenken constructed an explicit G-differential space homomorphism [graphic not available: see fulltext], called the quantization map, between the Weil algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ W_\mathfrak{g} = S(\mathfrak{g}*) \otimes \wedge (\mathfrak{g}*) $$\end{document} and [graphic not available: see fulltext] (which they call the noncommutative Weil algebra) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document}. They showed that [graphic not available: see fulltext] induces an algebra isomorphism between the basic cohomology rings Hbas*(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ W_\mathfrak{g} $$\end{document}) and Hbas*([graphic not available: see fulltext]). In this paper, we will interpret the quantization map [graphic not available: see fulltext] as the super Duflo map between the symmetric algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\left( {\widetilde{T\mathfrak{g}\left[ 1 \right]}} \right) $$\end{document} and the universal enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ U\left( {\widetilde{T\mathfrak{g}\left[ 1 \right]}} \right) $$\end{document} of a super Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widetilde{T\mathfrak{g}\left[ 1 \right]} $$\end{document} which is canonically associated with the quadratic Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document}. The basic cohomology rings Hbas*(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ W_\mathfrak{g} $$\end{document}) and Hbas*([graphic not available: see fulltext]) correspond exactly to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ S\left( {\widetilde{T\mathfrak{g}\left[ 1 \right]}} \right)^{inv} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ U\left( {\widetilde{T\mathfrak{g}\left[ 1 \right]}} \right)^{inv} $$\end{document}, respectively. So what they proved is equivalent to the fact that the super Duflo map commutes with the adjoint action of the super Lie algebra, and that the super Duflo map is an algebra homomorphism when restricted to the space of invariants.
引用
收藏
页码:285 / 304
页数:19
相关论文
共 18 条
[1]  
Alekseev A.(2000)The non-commutative Weil algebra Invent. Math. 139 135-172
[2]  
Meinrenken E.(1977)Opérateurs différentiels bi-invariants sur un groupe de Lie Ann. Sci. École Norm. Sup. 10 265-288
[3]  
Duflo M.(2003)Two applications of elementary knot theory to Lie algebras and Vassiliev invariants Geom. Topol. 7 1-31
[4]  
Bar-Natan D.(2003)Deformation quantization of Poisson manifolds Lett. Math. Phys. 66 157-216
[5]  
Le T. T. Q.(2002)Dirac cohomology, unitary representations and a proof of a conjecture of Vogan J. Amer. Math. Soc. 15 185-202
[6]  
Thurston D. P.(2005)Dirac cohomology for Lie superalgebras Transform. Groups 10 201-209
[7]  
Kontsevich M.(2003)Clifford algebras and the classical dynamical Yang-Baxter equation Math. Res. Lett. 10 253-268
[8]  
Huang J. S.(2005)Lie theory and the Chern-Weil homomorphism Ann. Sci. École Norm. Sup. 38 303-338
[9]  
Pandžić P.(1998)Geometry and classification of solutions of the classical dynamical Yang-Baxter equation Comm. Math. Phys. 192 77-120
[10]  
Huang J. S.(1997)Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition Adv. Math. 125 275-350