On the preconditioning of matrices with skew-symmetric splittings

被引:0
作者
Gene H. Golub
Denis Vanderstraeten
机构
[1] Stanford University,Scientific Computing and Computational Mathematics
[2] Katholieke Universiteit Leuven,Department Computer Science
来源
Numerical Algorithms | 2000年 / 25卷
关键词
preconditioning; skew-symmetry; incomplete orthogonal; factorization;
D O I
暂无
中图分类号
学科分类号
摘要
The rates of convergence of iterative methods with standard preconditioning techniques usually degrade when the skew-symmetric part S of the matrix is relatively large. In this paper, we address the issue of preconditioning matrices with such large skew-symmetric parts. The main idea of the preconditioner is to split the matrix into its symmetric and skew-symmetric parts and to “invert” the (shifted) skew-symmetric matrix. Successful use of the method requires the solution of a linear system with matrix I+S. An efficient method is developed using the normal equations, preconditioned by an incomplete orthogonal factorization.
引用
收藏
页码:223 / 239
页数:16
相关论文
共 22 条
[1]  
Axelsson O.(1985)A survey of preconditioned iterative methods for linear systems of algebraic equations BIT 25 166-187
[2]  
Eiermann M.(1992)Acceleration of relaxation methods for non-Hermitian linear systems SIAM J. Math. Anal. Appl. 13 979-991
[3]  
Niethammer W.(1998)An iteration for indefinite systems and its application to the Navier-Stokes equations SIAM J. Sci. Comput. 19 530-539
[4]  
Varga R.S.(1984)Incomplete methods for solving SIAM J. Sci. Statist. Comput. 5 978-987
[5]  
Golub G.H.(1989) = Results Math. 16 308-320
[6]  
Wathen A.(1991)Relaxation methods for non-Hermitian linear systems Comput. Methods Appl. Mech. Engrg. 45 75-95
[7]  
Jennings A.(1988)Lanczos and Arnoldi methods for the solution of convection-diffusion equations J. Comput. Appl. Math. 24 89-105
[8]  
Ajiz M.A.(1994)Preconditioning techniques for indefinite and nonsymmetric linear systems Numer. Linear Algebra Appl. 1 387-402
[9]  
Niethammer W.(1982)ILUT: A dual treshold incomplete ILU factorization Math. Comp. 39 559-561
[10]  
Varga R.S.(1997)A generalized Lanczos scheme SIAM J. Sci. Comput. 18 516-536