Single-atom catalysts modified by molecular groups for electrochemical nitrogen reduction

被引:0
|
作者
Zengxi Wei
Yuchang Liu
Hongjie Liu
Shaopeng Wang
Minchen Hou
Liwei Wang
Dong Zhai
Shuangliang Zhao
Kefu Yu
Shaolong Zhang
机构
[1] Guangxi University,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering
[2] Guangxi University,School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea
[3] Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,MOE Key Laboratory of New Processing Technology for Non
[4] Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),ferrous Metals and Materials
[5] Shenzhen University,College of Chemistry and Environmental Engineering
[6] Shandong University,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science
来源
Nano Research | 2022年 / 15卷
关键词
ammonia; nitrogen reduction reaction; single-atom catalysts (SACs); molecular groups; density functional theory (DFT) calculations;
D O I
暂无
中图分类号
学科分类号
摘要
Electrochemical nitrogen reduction reaction (eNRR) is one of the most important chemical reactions for the production of ammonia under ambient environment. However, the lack of in-depth understanding of the structure-activity relationship impedes the development of high-performance catalysts for ammonia production. Herein, the density functional theory (DFT) calculations are performed to reveal the structure-activity relationship for the single-atom catalysts (SACs) supported on g-C3N4, which is modified by molecular groups (i.e., H, O, and OH). The computational results demonstrate that the W-based SACs are beneficial to produce ammonia with a low limiting potential (UL). Particularly, the W-OH@g-C3N4 catalyst exhibits an ultralow UL of −0.22 V for eNRR. And the competitive eNRR selectivity can be identified by the dominant *N2 adsorption free energy than that of *H. Our findings provide a theoretical basis for the synthesis of efficient catalysts to produce ammonia.
引用
收藏
页码:9663 / 9669
页数:6
相关论文
共 50 条
  • [1] Single-atom catalysts modified by molecular groups for electrochemical nitrogen reduction
    Wei, Zengxi
    Liu, Yuchang
    Liu, Hongjie
    Wang, Shaopeng
    Hou, Minchen
    Wang, Liwei
    Zhai, Dong
    Zhao, Shuangliang
    Yu, Kefu
    Zhang, Shaolong
    NANO RESEARCH, 2022, 15 (10) : 9663 - 9669
  • [2] Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction
    Liang, Mengfang
    Shao, Xiaodong
    Lee, Hyoyoung
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (02)
  • [3] Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser
    Zou, Haiyuan
    Rong, Weifeng
    Wei, Shuting
    Ji, Yongfei
    Duan, Lele
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (47) : 29462 - 29468
  • [4] Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction
    Liu, Jieyuan
    Kong, Xue
    Zheng, Lirong
    Guo, Xu
    Liu, Xiaofang
    Shui, Jianglan
    ACS NANO, 2020, 14 (01) : 1093 - 1101
  • [5] Rational Design of Single-Atom Catalysts for Enhanced Electrocatalytic Nitrogen Reduction Reaction
    Agarwal, Sakshi
    Kumar, Ritesh
    Arya, Rakesh
    Singh, Abhishek K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (23) : 12585 - 12593
  • [6] Superior single-atom and single-cluster catalysts towards electrocatalytic nitrogen reduction reactions: a theoretical perspective
    Meng, Haihong
    Zhao, Yinghe
    Li, Fengyu
    Chen, Zhongfang
    JOURNAL OF MATERIALS INFORMATICS, 2025, 5 (01):
  • [7] Termination-Accelerated Electrochemical Nitrogen Fixation on Single-Atom Catalysts Supported by MXenes
    Niu, Kaifeng
    Chi, Lifeng
    Rosen, Johanna
    Bjork, Jonas
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (12) : 2800 - 2807
  • [8] Electronic Structure Based Intuitive Design Principle of Single-Atom Catalysts for Efficient Electrolytic Nitrogen Reduction
    Kumar, Ritesh
    Singh, Abhishek K.
    CHEMCATCHEM, 2020, 12 (21) : 5456 - 5464
  • [9] Single-atom catalysts for electrochemical N2 reduction to NH3
    Iqbal, Muhammad Saqlain
    Yao, Zhi-Bo
    Ruan, Yu-Kun
    Iftikhar, Ramsha
    Hao, Lei-Duan
    Robertson, Alex W.
    Imran, Syed Muhammad
    Sun, Zhen-Yu
    RARE METALS, 2023, 42 (04) : 1075 - 1097
  • [10] A Self-Consistent Framework for Tailored Single-Atom Catalysts in Electrocatalytic Nitrogen Reduction
    Qin, Mingxin
    Chen, Lanlan
    Zhang, Wenhua
    Yang, Jinlong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (04) : 1089 - 1096