On One Uniqueness Theorem for a Weighted Hardy Space

被引:0
作者
T. I. Hishchak
机构
[1] Franko Drohobych Pedagogic University,
来源
Ukrainian Mathematical Journal | 2015年 / 67卷
关键词
Hardy Space; Half Plane; Uniqueness Theorem; Riemann Problem; Interpolation Problem;
D O I
暂无
中图分类号
学科分类号
摘要
A uniqueness theorem is proved for the space of functions analytic in the right half plane and satisfying the condition supφ<π2∫0+∞freiφpe−pσrsinφdr<+∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \underset{\left|\upvarphi \right|<\frac{\uppi}{2}}{ \sup}\left\{{\displaystyle \underset{0}{\overset{+\infty }{\int }}{\left|f\left(r{e}^{i\varphi}\right)\right|}^p{e}^{-p\sigma r\left| \sin \varphi \right|}dr}\right\}<+\infty . $$\end{document}
引用
收藏
页码:372 / 380
页数:8
相关论文
共 50 条