Generalized derivations on some convolution algebras

被引:0
作者
M. H. Ahmadi Gandomani
M. J. Mehdipour
机构
[1] Shiraz University of Technology,Department of Mathematics
来源
Aequationes mathematicae | 2018年 / 92卷
关键词
Locally compact abelian groups; Generalized derivations; -centralizing mappings; Singer–Wermer conjecture; Orthogonal generalized derivations; Primary 43A15; 16W25; Secondary 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact abelian group, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} be a weighted function on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^+$$\end{document}, and let D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} be the Banach algebra L0∞(G)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (G)^*$$\end{document} or L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}. In this paper, we investigate generalized derivations on the noncommutative Banach algebra D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We characterize k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-(skew) centralizing generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and show that the zero map is the only k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {k}$$\end{document}-skew commuting generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document}. We also investigate the Singer–Wermer conjecture for generalized derivations of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} and prove that the Singer–Wermer conjecture holds for a generalized derivation of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {D}$$\end{document} if and only if it is a derivation; or equivalently, it is nilpotent. Finally, we investigate the orthogonality of generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document} and give several necessary and sufficient conditions for orthogonal generalized derivations of L0∞(ω)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0^\infty (\omega )^*$$\end{document}.
引用
收藏
页码:223 / 241
页数:18
相关论文
共 50 条
  • [31] On Lie Ideals with Generalized Derivations and Non-commutative Banach Algebras
    Rehman, Nadeem Ur
    Raza, Mohd Arif
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 747 - 764
  • [32] On rings and algebras with derivations
    Ali, Shakir
    Khan, Mohammad Salahuddin
    Khan, Abdul Nadim
    Muthana, Najat M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (06)
  • [33] Differential identities involving three generalized derivations on prime rings and Banach algebras
    Bouchannafa, Karim
    Hermas, Abderrahman
    Oukhtite, Lahcen
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [34] On prime and semiprime rings with generalized derivations and non-commutative Banach algebras
    MOHD ARIF RAZA
    NADEEM UR REHMAN
    Proceedings - Mathematical Sciences, 2016, 126 : 389 - 398
  • [35] Constructions and generalized derivations of multiplicative n-BiHom-Lie color algebras
    Bakayoko, Ibrahima
    Laraiedh, Ismail
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1982 - 2014
  • [36] On prime and semiprime rings with generalized derivations and non-commutative Banach algebras
    Raza, Mohd Arif
    Rehman, Nadeem Ur
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (03): : 389 - 398
  • [38] CONTINUOUS GENERALIZED (theta,phi)-SEPARATING DERIVATIONS ON ARCHIMEDEAN ALMOST f-ALGEBRAS
    Toumi, Mohamed Ali
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (03)
  • [39] Derivations and right ideals of algebras
    Kosan, M. Tamer
    Lee, Tsiu-Kwen
    Zhou, Yiqiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2773 - 2781
  • [40] LINEAR DERIVATIONS ON BANACH *-ALGEBRAS
    Alhazmi, Husain
    Khan, Abdul Nadim
    MATHEMATICA SLOVACA, 2021, 71 (01) : 27 - 32