On the standing waves of the Schrödinger equation with concentrated nonlinearity

被引:0
作者
Abba Ramadan
Atanas G. Stefanov
机构
[1] University of Kansas,Department of Mathematics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Concentrated NLS; Solitons; Stability; Primary 35Q55; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the concentrated NLS on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbf {R}}}^n$$\end{document}, with power non-linearities, driven by the fractional Laplacian, (-Δ)s,s>n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s, s>\frac{n}{2}$$\end{document}. We construct the solitary waves explicitly, in an optimal range of the parameters, so that they belong to the natural energy space Hs(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({{\mathbf {R}}}^n)$$\end{document}. Next, we provide a complete classification of their spectral stability. Finally, we show that the waves are non-degenerate and consequently orbitally stable, whenever they are spectrally stable. Incidentally, our construction shows that the soliton profiles for the concentrated NLS are in fact exact minimizers of the Sobolev embedding Hs(Rn)↪L∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({{\mathbf {R}}}^n)\hookrightarrow L^\infty ({{\mathbf {R}}}^n)$$\end{document}, which provides an alternative calculation and justification of the sharp constants in these inequalities.
引用
收藏
相关论文
共 44 条
  • [1] Adami R(2013)Stability and symmetry-breaking bifurcation for the ground states of a NLS with a Commun. Math. Phys. 318 247-289
  • [2] Noja D(2001) interaction J. Funct. Anal. 180 148-175
  • [3] Adami R(2003)A class of nonlinear Schrödinger equations with concentrated nonlinearity Ann. Inst. H. Poincaré Anal. Non Linéaire 20 477-500
  • [4] Teta A(2004)The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity Ann. Inst. H Poincaré Anal. Non Linéaire 21 121-137
  • [5] Adami R(2013)Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity J. Math. Phys. 54 013501-5879
  • [6] Dell’Antonio G(2016)Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three Discrete Contin. Dyn. Syst. 36 5837-8053
  • [7] Figari R(1999)Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: neutral modes Phys. Rev. B 59 8049-3143
  • [8] Teta A(2019)Quantum turbulence and resonant tunneling Nonlinearity 32 3112-1235
  • [9] Adami R(2015)Nonlinear singular perturbations of the fractional Schrödinger equation in dimension one Anal. PDE 8 1165-1961
  • [10] Dell’Antonio G(2015)Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum Nonlinearity 28 1937-21