Hausdorff dimension of invariant sets for random dynamical systems

被引:58
作者
Crauel H. [1 ]
Flandoli F. [2 ]
机构
[1] Fachbereich 3 Mathematik, Sekr. MA 7-4, 10623 Berlin
[2] Dipartimento di Matematica Applicata U. Dini, 56126 Pisa
关键词
Hausdorff dimension; Navier-Stokes equation; Random attractor; Random dynamical system; Random invariant set; Reaction diffusion equation;
D O I
10.1023/A:1022605313961
中图分类号
学科分类号
摘要
Suppose ω→X(ω) is a compact random set, invariant with respect to a continuously differentiable random dynamical system (RDS) on a separable Hilbert space. It is shown that the Hausdorff dimension dim H(X(ω)) is an invariant random variable, and it is bounded by d, provided the RDS contracts d-dimensional volumes exponentially fast. Both exponential decrease of d-volumes as well as the approximation of the RDS by its linearization are assumed to hold uniformly in ωεΩ. The results are applied to reaction diffusion equations with additive noise and to two-dimensional Navier-Stokes equations with bounded real noise. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:449 / 474
页数:25
相关论文
共 16 条
[1]  
Arnold L., Random Dynamical Systems, (1998)
[2]  
Arnold L., Crauel H., Random dynamical systems, Lyapunov Exponents, Proceedings, Oberwolfach 1990, pp. 1-22, (1991)
[3]  
Brzezniak Z., Capinski M., Flandoli F., Stochastic partial differential equations and turbulence, Math. Models Methods Appl. Sci., 1, 1, pp. 41-59, (1991)
[4]  
Brzezniak Z., Capinski M., Flandoli F., Pathwise global attractors for stationary random dynamical systems, Prob. Theory Related Fields, 95, pp. 87-102, (1993)
[5]  
Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, (1977)
[6]  
Clouet J.F., A diffusion-approximation theorem in Navier-Stokes equation, Stochastic Anal. Appl., 14, pp. 33-46, (1996)
[7]  
Constantin P., Foias C., Temam R., Attractors Representing Turbulent Flows, 53, 314, (1985)
[8]  
Crauel H., Global random attractors are uniquely determined by attracting deterministic compact sets, Ann. Mat.
[9]  
Crauel H., Flandoli F., Attractors for random dynamical systems, Prob. Theory Related Fields, 100, pp. 365-393, (1994)
[10]  
Crauel H., Debussche A., Flandoli F., Random attractors, J. Dynam. Diff. Eq., 9, pp. 307-341, (1997)