Denoising with discrete Morse theory

被引:0
|
作者
Soham Mukherjee
机构
[1] Purdue University,Department of Computer Science
来源
The Visual Computer | 2021年 / 37卷
关键词
Persistent homology; Discrete Morse theory; Topological data analysis; Noise removal;
D O I
暂无
中图分类号
学科分类号
摘要
Denoising noisy datasets is a crucial task in this data-driven world. In this paper, we develop a persistence-guided discrete Morse theoretic denoising framework. We use our method to denoise point-clouds and to extract surfaces from noisy volumes. In addition, we show that our method generally outperforms standard methods. Our paper is a synergy of classical noise removal techniques and topological data analysis.
引用
收藏
页码:2883 / 2894
页数:11
相关论文
共 50 条
  • [1] Denoising with discrete Morse theory
    Mukherjee, Soham
    VISUAL COMPUTER, 2021, 37 (9-11) : 2883 - 2894
  • [2] Discrete Morse Theory for Computing Zigzag Persistence
    Clément Maria
    Hannah Schreiber
    Discrete & Computational Geometry, 2024, 71 : 708 - 737
  • [3] Discrete Morse Theory for Computing Zigzag Persistence
    Maria, Clement
    Schreiber, Hannah
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (02) : 708 - 737
  • [4] Multiparameter discrete Morse theory
    Brouillette G.
    Allili M.
    Kaczynski T.
    Journal of Applied and Computational Topology, 2024, 8 (7) : 2155 - 2196
  • [5] Equivariant discrete Morse theory
    Freij, Ragnar
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3821 - 3829
  • [6] Discrete Morse theory on digraphs
    Lin, Yong
    Wang, Chong
    Yau, Shing-Tung
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (05) : 1711 - 1737
  • [7] Morse Sequences: A Simple Approach to Discrete Morse Theory
    Bertrand, Gilles
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2025, 67 (02)
  • [8] Discrete Morse Theory for Computing Cellular Sheaf Cohomology
    Curry, Justin
    Ghrist, Robert
    Nanda, Vidit
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (04) : 875 - 897
  • [9] Merge trees in discrete Morse theory
    Johnson, Benjamin
    Scoville, Nicholas A.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [10] Parameterized Complexity of Discrete Morse Theory
    Burton, Benjamin A.
    Lewiner, Thomas
    Paixao, Joao
    Spreer, Jonathan
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2016, 42 (01):