Kählerity of Einstein four-manifolds

被引:1
作者
Li, Xiaolong [1 ]
Zhang, Yongjia [2 ]
机构
[1] Wichita State Univ, Dept Math Stat & Phys, Wichita, KS 67260 USA
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Einstein four-manifolds; Kahler-Einstein; Self-dual Weyl tensor; Curvature restriction; CURVATURE; MANIFOLDS; METRICS;
D O I
10.1007/s00209-024-03480-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a closed oriented Einstein four-manifold is either anti-self-dual or (after passing to a double Riemannian cover if necessary) Kahler-Einstein, provided that lambda 2 >=-S12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2 \ge -\frac{S}{12}$$\end{document}, where lambda 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _2$$\end{document} is the middle eigenvalue of the self-dual Weyl tensor W+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>+$$\end{document} and S is the scalar curvature. An analogous result holds for closed oriented four-manifolds with delta W+=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta W<^>+=0$$\end{document}.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
BESSE A, 1987, EINSTEIN MANIFOLDS
[2]   Hitchin-Thorpe inequality and Kaehler metrics for compact almost Ricci soliton [J].
Brasil, A. ;
Costa, E. ;
Ribeiro Jr, E. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) :1851-1860
[4]  
Cao X., 2014, Einstein four-manifolds of three-nonnegative curvature operator
[5]   FOUR-MANIFOLDS OF PINCHED SECTIONAL CURVATURE [J].
Cao, Xiaodong ;
Tran, Hung .
PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (01) :17-38
[6]   Einstein four-manifolds of pinched sectional curvature [J].
Cao, Xiaodong ;
Tran, Hung .
ADVANCES IN MATHEMATICS, 2018, 335 :322-342
[7]  
Chow B., 2006, HAMILTONS RICCI FLOW, V77
[8]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[9]  
Fine J, 2014, NEW YORK J MATH, V20, P293
[10]   On Einstein manifolds of positive sectional curvature [J].
Gursky, MJ ;
LeBrun, C .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1999, 17 (04) :315-328