Independence algebras, basis algebras and the distributivity condition

被引:0
|
作者
W. Bentz
V. Gould
机构
[1] University of Hull,Department of Physics and Mathematics
[2] University of York,Department of Mathematics
来源
Acta Mathematica Hungarica | 2020年 / 162卷
关键词
independence algebra; basis algebra; -algebra; reduct; order; 08A05; 20M20; 20M25;
D O I
暂无
中图分类号
学科分类号
摘要
Stable basis algebras were introduced by Fountain and Gould and developed in a series of articles. They form a class of universal algebras, extending that of independence algebras, and reflecting the way in which free modules over well-behaved domains generalise vector spaces. If a stable basis algebra B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{B}$$\end{document} satisfies the distributivity condition (a condition satisfied by all the previously known examples), it is a reduct of an independence algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}$$\end{document} . Our first aim is to give an example of an independence algebra not satisfying the distributivity condition.
引用
收藏
页码:419 / 444
页数:25
相关论文
共 50 条