Homological mirror symmetry of elementary birational cobordisms

被引:0
作者
Gabriel Kerr
机构
[1] Kansas State University,Department of Mathematics
来源
Selecta Mathematica | 2017年 / 23卷
关键词
Primary 53D37; Secondary 53D05;
D O I
暂无
中图分类号
学科分类号
摘要
The derived category of coherent sheaves TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_B$$\end{document} associated to a birational cobordism which is either a weighted projective space, a stacky Atiyah flip, or a stacky blow-up of a point has a conjectural mirror Fukaya–Seidel category TA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_A$$\end{document}. The potential W defining TA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{A}$$\end{document} has base C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^*$$\end{document} and exhibits a great deal of symmetry. This paper investigates the structure of the Fukaya–Seidel category for the mirror potentials. A proof of homological mirror symmetry TA≅TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_A \cong {\mathcal {T}}_B$$\end{document} for these birational cobordisms is then given.
引用
收藏
页码:2801 / 2847
页数:46
相关论文
共 42 条
[1]  
Abouzaid M(2009)Morse homology, tropical geometry, and homological mirror symmetry for toric varieties Sel. Math. 15 189-270
[2]  
Abouzaid M(2012)On the wrapped Fukaya category and based loops J. Symplectic Geom. 10 27-79
[3]  
Abouzaid M(2013)Homological mirror symmetry for punctured spheres J. Am. Math. Soc. 26 1051-1083
[4]  
Auroux D(2006)Mirror symmetry for del pezzo surfaces: vanishing cycles and coherent sheaves Invent. Math. 166 537-582
[5]  
Efimov A(2008)Mirror symmetry for weighted projective planes and their noncommutative deformations Ann. Math. 167 867-943
[6]  
Katzarkov L(2015)The Mori program and non-fano toric homological mirror symmetry Trans. Am. Math. Soc. 367 8933-8974
[7]  
Orlov D(1978)Coherent sheaves on Funktsional. Anal. Prilozhen. 12 68-69
[8]  
Auroux D(1996) and problems in linear algebra J. Am. Math. Soc. 9 473-527
[9]  
Katzarkov L(2016)Koszul duality patterns in representation theory J. Eur. Math. Soc. 18 2167-2271
[10]  
Orlov D(2012)Symplectomorphism group relations and degenerations of Landau–Ginzburg models Adv. Math. 229 1875-1911