On Automorphisms of a Distance-Regular Graph with Intersection Array {69, 56, 10; 1, 14, 60}

被引:0
作者
A. A. Makhnev
M. S. Nirova
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
[3] Kabardino-Balkar State University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2018年 / 303卷
关键词
distance-regular graph; automorphism of a graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be a distance-regular graph of diameter 3 with eigenvalues θ0 > θ1 > θ2 > θ3. If θ2 = −1, then the graph Γ3 is strongly regular and the complementary graph Γ¯3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _3}$$\end{document} is pseudogeometric for pGc3(k, b1/c2). If Γ3 does not contain triangles and the number of its vertices v is less than 800, then Γ has intersection array {69, 56, 10; 1, 14, 60}. In this case Γ3 is a graph with parameters (392, 46, 0, 6) and Γ¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _2}$$\end{document} is a strongly regular graph with parameters (392, 115, 18, 40). Note that the neighborhood of any vertex in a graph with parameters (392, 115, 18, 40) is a strongly regular graph with parameters (115, 18, 1, 3) and its existence is unknown. In this paper, we find possible automorphisms of these strongly regular graphs and automorphisms of a hypothetical distance-regular graph with intersection array {69, 56, 10; 1, 14, 60}. In particular, it is proved that the latter graph is not ar-ctransitive.
引用
收藏
页码:166 / 174
页数:8
相关论文
共 50 条
[41]   Automorphism Group of a Distance-Regular Graph with Intersection Array {35,32,1;1,4,35} [J].
Bitkina, V. V. ;
Makhnev, A. A. .
ALGEBRA AND LOGIC, 2018, 56 (06) :443-450
[42]   An automorphism group of a distance-regular graph with intersection array {24,21,3;1,3,18} [J].
Makhnev, A. A. ;
Paduchikh, D. V. .
ALGEBRA AND LOGIC, 2012, 51 (04) :319-332
[43]   Automorphisms of a Distance Regular Graph with Intersection Array {21,18,12,4;1,1,6,21} [J].
Makhnev, A. A. .
MATHEMATICAL NOTES, 2021, 109 (1-2) :247-255
[44]   The uniqueness of a distance-regular graph with intersection array {32,27,8,1;1,4,27,32} and related results [J].
Soicher, Leonard H. .
DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) :101-108
[45]   On the Nonexistence of Distance-Regular Graphs with Intersection Array {53,40,28,16; 1,4,10,28} [J].
Makhnev A.A. ;
Golubyatnikov M.P. .
Makhnev, A.A. (makhnev@imm.uran.ru); Golubyatnikov, M.P. (mike_ru1@mail.ru), 1600, Pleiades journals (15) :443-450
[46]   A distance regular graph with intersection array (21,16,8; 1,4,14) does not exist [J].
Coolsaet, K .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (05) :709-716
[47]   A New Distance-Regular Graph Associated to the Mathieu Group M10 [J].
A.E. Brouwer ;
J.H. Koolen ;
R.J. Riebeek .
Journal of Algebraic Combinatorics, 1998, 8 :153-156
[48]   A new distance-regular graph associated to the Mathieu group M10 [J].
Brouwer, AE ;
Koolen, JH ;
Riebeek, RJ .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (02) :153-156
[49]   On Bipartite Distance-Regular Graphs with Intersection Numbers ci = (qi − 1)/(q − 1) [J].
Štefko Miklavič .
Graphs and Combinatorics, 2013, 29 :121-130
[50]   On small distance-regular graphs with the intersection arrays {mn - 1, (m - 1)(n [J].
Makhnev, Aleksandr A. ;
Golubyatnikov, Mikhail P. .
DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (05) :273-281