On Automorphisms of a Distance-Regular Graph with Intersection Array {69, 56, 10; 1, 14, 60}

被引:0
作者
A. A. Makhnev
M. S. Nirova
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
[3] Kabardino-Balkar State University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2018年 / 303卷
关键词
distance-regular graph; automorphism of a graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ be a distance-regular graph of diameter 3 with eigenvalues θ0 > θ1 > θ2 > θ3. If θ2 = −1, then the graph Γ3 is strongly regular and the complementary graph Γ¯3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _3}$$\end{document} is pseudogeometric for pGc3(k, b1/c2). If Γ3 does not contain triangles and the number of its vertices v is less than 800, then Γ has intersection array {69, 56, 10; 1, 14, 60}. In this case Γ3 is a graph with parameters (392, 46, 0, 6) and Γ¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar \Gamma _2}$$\end{document} is a strongly regular graph with parameters (392, 115, 18, 40). Note that the neighborhood of any vertex in a graph with parameters (392, 115, 18, 40) is a strongly regular graph with parameters (115, 18, 1, 3) and its existence is unknown. In this paper, we find possible automorphisms of these strongly regular graphs and automorphisms of a hypothetical distance-regular graph with intersection array {69, 56, 10; 1, 14, 60}. In particular, it is proved that the latter graph is not ar-ctransitive.
引用
收藏
页码:166 / 174
页数:8
相关论文
共 50 条
  • [31] Automorphisms of a Distance-Regular Graph with Intersection Array {176,135,32,1;1,16,135,176}
    Makhnev, A. A.
    Paduchikh, D. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S102 - S113
  • [32] The Largest Moore Graph and a Distance-Regular Graph with Intersection Array {55, 54, 2; 1, 1, 54}
    A. A. Makhnev
    D. V. Paduchikh
    [J]. Algebra and Logic, 2020, 59 : 322 - 327
  • [33] AUTOMORPHISMS OF A REMOTELY REGULAR GRAPH WITH AN INTERSECTION ARRAY
    Makhnev, Alexandr Alekseevich
    Belousova, Veronika Igorevna
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 493 - 500
  • [34] DISTANCE-REGULAR GRAPHS WITH INTERSECTION ARRAY {69,56,10;1,14,60}, {74,54,15;1,9,60} AND {119,100,15;1,20,105} DO NOT EXIST
    Makhnev, A. A.
    Isakova, M. M.
    Nirova, M. S.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1254 - 1259
  • [35] Automorphism Group of a Distance-Regular Graph with Intersection Array {35, 32, 1; 1, 4, 35}
    V. V. Bitkina
    A. A. Makhnev
    [J]. Algebra and Logic, 2018, 56 : 443 - 450
  • [36] An automorphism group of a distance-regular graph with intersection array {24, 21, 3; 1, 3, 18}
    A. A. Makhnev
    D. V. Paduchikh
    [J]. Algebra and Logic, 2012, 51 : 319 - 332
  • [37] DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY {105, 72, 24; 1, 12, 70} DOES NOT EXIST
    Belousov, I. N.
    Makhnev, A. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 206 - 216
  • [38] The Largest Moore Graph and a Distance-Regular Graph with Intersection Array {55,54,2;1,1,54}
    Makhnev, A. A.
    Paduchikh, D. V.
    [J]. ALGEBRA AND LOGIC, 2020, 59 (04) : 322 - 327
  • [39] A DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY (5, 4, 3, 3 1, 1, 1, 2) DOES NOT EXIST
    FONDERFLAASS, DG
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (01) : 49 - 56
  • [40] On automorphisms of distance-regular graphs with intersection arrays {2r
    Belousov, I. N.
    Makhnev, A. A.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 28 - 37